1.4. Соответствия и функции
Соответствием между множествами А и В называется подмножество их декартова произведения GА·В.
Если (а,b)G, то b соответствует а при соответствии G. Множество проекций пр1G называется областью определения соответствия, множество пр2G – областью значений соответствия. Если пр2G=А, то соответствие полностью определенное (в противном случае – частичное). Если пр2G=В, то соответствие сюрьективно.
Множество всех bВ, соответствующих элементу а, в А называется образом а в В при соответствии G. Множество всех а, которым соответствует b, называется прообразом b в А при соответствии G.
Всюду определенное соответствие называют отображением и иногда записывают как Г:ХY, где – знак отображения.
Подмножество FX·Y называется функцией, если для каждого элемента х, хХ найдется не более одного элемента yY в парах вида (х,y)F. При этом, если для каждого элемента х имеется один элемент y, то функция полностью определена, в противном случае – частично определена (недоопределена). Множество Х – область определения функции F, множество Y – область значений функции. Часто вместо записи (х,y)F используют запись y=F(х), при этом элемент х называют аргументом или переменной, а y – значением функции F. Количество аргументов определяет местность функции.
Сопоставим с декартовым произведением двух множеств прямоугольную решетку, узлы которой взаимно однозначно соответствуют элементам декартова произведения [9-10].
На рис. 7а изображено подмножество декартова произведения множеств Х={х1,х2,х3,х4} и Y={y1,y2,y3}, не являющееся функцией, на рис. 7б – являющееся полностью определенной функцией; на рис. 7в – являющееся частично определенной функцией.
а) F1XY, не являющееся функцией, т.к. одному значению х может соответствовать два значения y. | б) F2XY, являющееся полностью определенной функцией. | в) F3XY, являющееся недоопределенной функцией, не определенной на значении аргумента х3. |
Рис.7. Подмножества декартова произведения XY
Соответствие G между множествами Х и Y называется взаимно однозначным, если каждому элементу хХ соответствует определенный элемент yY, и, наоборот, каждый элемент yY оказывается поставленным в соответствие одному элементу хХ.
Соответствие между множеством функций и множеством чисел называется функционалом [19]. Часто говорят «функционал качества».
Например, функционалом может быть определенный интеграл, ставящий в соответствие некоторой функции число.
Соответствие между двумя множествами функций называется оператором. Например, имеется оператор дифференцирования.
Множество А называется эквивалентным множеству В, если существует взаимнооднозначное соответствие множеств А и В, это обозначается как
А=В или АВ.
Этот факт позволяет определять неизвестную мощность одних множеств по известной мощности других, им эквивалентным. Множества, эквивалентные (равномощные) множеству натуральных чисел, называются счетными. В счетных множествах возможна нумерация элементов. Пример множества, не являющегося счетным – множество всех действительных чисел отрезка [0,1]. Это доказывается теоремой Кантора [19]. Попробуем пронумеровать это множество. Расположим все числа, изображенные бесконечными десятичными дробями в порядке нумерации:
0, а11 а12 а13 ...
0, а21 а22 а23 ...
0, а31 а32 а33 ...
. . . . . .,
где первая цифра индекса – номер бесконечной десятичной дроби. Рассмотрим теперь любую бесконечную десятичную дробь 0, b1 b2 b3... такую, что b1а11, b2а22, b3а33 и т.д. Такая дробь не входит в указанную последовательность, так как отличается от первого числа первой цифрой, от второго числа – второй цифрой и т.д. Следовательно, все числа из отрезка [0,1] не могут быть пронумерованы, т.е. это множество несчетно. Его мощность называется континуум и все эквивалентные ему множества называются континуальными. Так, множество всех подмножеств счетного множества континуально.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации