2.6. Решение уравнений в алгебре множеств.
При решении уравнений в алгебре множеств исходят из того, что: 1) два множества равны тогда и только тогда, когда их симметрическая разность пуста; 2) определяются условия, при которых уравнения имеют решение [23].
Например, XC=D. Преобразуем уравнение к виду (XC)D=Æ. Любое уравнение, в правой части которого указано пустое множество может быть преобразовано в уравнение с декомпозицией по X:
(F1X)(F2)=,
где F1, F2 – формулы, не содержащие X.
Очевидно, что объединение пусто тогда и только тогда, когда объединяемые множества пусты:
(F1X)= и (F2)=.
Два полученных уравнения и исходное уравнение имеют решение тогда и только тогда, когда:
.
Поэтому необходимо определить F1, F2, что и является результатом решения уравнения.
Итак, (XC)D=Æ. Декомпозицию по X выполним, с помощью формулы симметрической разности двух множеств, использующей только операции объединения, пересечения и дополнения:
,
где – разность,– разность.
Выполним алгебраические операции:
.
В этой формуле не хватает пересечения скобки с неизвестным множеством (или его дополнением). Его всегда можно ввести, используя пересечение с универсальным множеством, представленным в виде:
.
Далее раскрываем скобки и применяем законы алгебры множеств:
.
Здесь налицо поглощение , поэтому:
.
Выносим за скобку:
.
Обращаем внимание, что , поэтому:
.
Таким образом: , т.е.– это и есть ответ.
Само собой, в этом случае может быть множество решений для конкретных C, D.
Пусть C={2,3,6,9}, D={1,2,3,5,6,7,8,9}. Тогда (CD)={1,5,7,8}D. X может быть, например, таким: X={1,2,5,7,8,9}, т.е. соотношение (CD)XD – выполняется.
Пусть C={2,3,4,6,9}, при том же D={1,2,3,5,6,7,8,9}. Тогда (CD)={1,4,5,7,8} не включается в D={1,2,3,5,6,7,8,9}. В этом случае решения нет!
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации