Коды и шифры
Хотя слова код и шифр часто употребляются нестрого, мы проведем разграничение между этими понятиями. В коде часто встречающиеся элементы текста (которые могут состоять из одной или более букв, чисел или слов) обычно заменяются четырьмя или пятью буквами или числами, которые называются кодовыми группами и берутся из кодовой книги. Для особенно часто употребительных выражений или знаков кодовая книга может предлагать несколько кодовых групп. Это делается для того, чтобы криптограф мог варьировать ими с целью затруднить их идентификацию. Так, например, в четырехзначном цифровом коде для слова "понедельник" могут быть три альтернативные кодовые группы - к примеру, 1538, либо 2951, либо 7392. Коды мы рассмотрим в главе 6.
Коды - это частный случай системы шифрования, однако не все системы шифрования являются кодами. Мы будем использовать слово шифр по отношению к методам шифрования, в которых используются не кодовые книги, а шифрованный текст получается из исходного открытого текста согласно определенному правилу. В наше время вместо слова "правило" предпочитают пользоваться словом "алгоритм", особенно если речь идет о компьютерной программе. Различие между понятиями кода и шифра иногда не совсем четкое, особенно для простых систем. Пожалуй, можно считать, что шифр Юлия Цезаря использует одностраничную кодовую книгу, где каждой букве алфавита сопоставлена буква, стоящая в алфавите на три позиции далее. Однако для большинства систем, которые мы рассмотрим, это отличие будет довольно четким. Так, например, "Энигма", которую часто ошибочно называют "кодом Энигма", безусловно является вовсе не кодом, а шифрмашиной.
Исторически сложилось так, что вплоть до сравнительно недавнего времени в криптографии преобладали две основные идеи, и многие системы шифрования (в том числе почти все из описанных в первых одиннадцати главах этой книги) были основаны на одной из них или на обеих сразу. Первая идея сводилась к тому, чтобы перетасовать буквы алфавита (как обычно тасуют колоду карт) с целью получить нечто, что можно рассматривать как случайный порядок, перестановку или анаграмму букв. Вторая идея состоит в том, чтобы преобразовать буквы сообщения в числа (например, положив A=0, B=1, ..., Z=25), и затем прибавлять к ним (число за числом) другие числа, называемые гаммой, которые, в свою очередь, могут быть буквами, преобразованными в числа. Если в результате сложения получается число, большее чем 25, вычтем из него 26 (этот способ называется сложением по модулю 26). Результат затем преобразуется обратно в буквы. Если числа, прибавляемые к тексту, получены при помощи довольно трудно предсказуемого процесса, то зашифрованное таким способом сообщение очень трудно, или даже невозможно дешифровать без знания гаммы.
Любопытно отметить, что шифр Юлия Цезаря, каким бы незамысловатым он ни был, можно считать примером и того, и другого типа. В первом случае наше "тасование колоды" эквивалентно простому перемещению последних трех карт в начало колоды, так что все буквы смещаются вниз на три позиции, а X, Y и Z оказываются в начале. Во втором случае гаммой является число 3, повторенное бесконечное число раз. Нельзя себе и представить ничего "слабее" такого гаммы.
Перевод сообщения на другой язык, пожалуй, тоже можно было бы считать определенным видом шифрования с использованием кодовой книги (то есть словаря), но это всё-таки слишком вольное употребление слова код. Однако такой способ перевода на другой язык, когда за каждым словом лезут в словарь как в кодовую книгу, определенно не следует рекомендовать. Это известно каждому, кто пытался изучать иностранный язык.*) С другой стороны, иногда вполне резонно воспользоваться малоизвестным языком для передачи сообщений, актуальность которых ограничена во времени. Рассказывают, например, что во время второй мировой войны в американских войсках в Тихом океане в качестве телефонистов иногда использовали солдат из индейского племени навахо, чтобы те передавали сообщения на своем родном языке, вполне обоснованно допуская, что даже в случае перехвата телефонных переговоров противник едва ли нашел бы в своих рядах человека, владеющего этим языком и способного понять содержание сообщения.
Другой способ скрыть содержание информации - использовать некую персональную скоропись. Этим методом еще в средние века пользовались авторы личных дневников - например, Самюэль Пепис (Samuel Pepys). Такие коды нетрудно вскрыть, если записей в дневнике достаточно. Регулярные повторения некоторых символов (к примеру, знаков, обозначающих дни недели) служат хорошим подспорьем для прочтения некоторых слов и выражений. Примером более основательного труда может послужить дешифрование древней микенской письменности, известной как "линейное письмо Б", где знаки соответствовали слогам древнегреческого языка; заслуга дешифрования этого вида письменности принадлежит Майклу Вентрису*) (см. [1.4]).
Широкое распространение компьютеров и возможность практического построения сложных электронных микросхем на кремниевых кристаллах произвели революцию как в криптографии, так и в криптоанализе. В результате некоторые современные системы шифрования основываются на передовых математических концепциях и требуют солидной вычислительной и электронной базы. Поэтому в докомпьютерную эпоху пользоваться ими было практически невозможно. Некоторые из них описаны в главах 12 и 13.
- Глава 1. Введение 10
- Глава 9. Шифрмашина "Энигма" 130
- Глава 10. Шифрмашина "Хагелин" 152
- Глава 11. После "Энигмы" 172
- Глава 12. Криптография с открытым ключом 179
- Глава 13. Шифрование и Интернет 188
- Предисловие
- Глава 1. Введение Некоторые аспекты безопасности связи
- Шифр Юлия Цезаря
- Несколько основных определений
- Три этапа дешифрования: идентификация, взлом системы и вскрытие ключей.
- Коды и шифры
- Оценка стойкости системы шифрования
- Коды, обнаруживающие и исправляющие ошибки
- Другие методы сокрытия содержания сообщений
- Модульная арифметика
- Модульное сложение и вычитание букв
- Заключение
- Глава 2. От Юлия Цезаря до простой замены Шифры Юлия Цезаря и их вскрытие
- Шифры простой замены
- Вскрытие шифра простой замены
- Частоты встречаемости букв в других языках, кроме английского
- Сколько знаков необходимо для дешифрования простой замены?
- Глава 3. Многоалфавитные системы Усиление системы Юлия Цезаря: шифры Вижанэра
- Вскрытие шифра Вижанэра
- Индикаторы
- Одноключевые сообщения
- Распознавание одноключевых сообщений
- Какой объем текста необходим для дешифрования шифра Вижанэра?
- Цилиндр Джефферсона
- Глава 4. Шифры-головоломки
- Перестановки
- Простая перестановка
- Двойная перестановка
- Другие виды перестановок
- Регулярные перестановочные таблицы
- Нерегулярные перестановочные таблицы
- Оценка стойкости шифров перестановки
- Общая концепция двойного шифрования
- Глава 5. Двухбуквенные шифры
- Замена "монограф-диграф"
- Мдпм-шифры
- Система "диграф-диграф"
- Шифр Плейфера*)
- Расшифрование в системе Плейфера
- Криптоаналитические аспекты системы Плейфера
- Двойной шифр Плейфера
- Глава 6. Коды Характеристики кодов
- Одночастевые и двухчастевые коды
- Код плюс аддитивное шифрование
- Глава 7. Шифры для шпионов
- Шифры-решетки
- Книжные шифры
- Использование книжного шифра
- Частоты встречаемости букв в книжных шифрах
- Вскрытие книжного шифра
- Индикаторы
- Катастрофические ошибки при использовании книжного шифра
- Шифры "агента Гарбо"
- Первый шифр "агента Гарбо"
- Второй шифр "агента Гарбо"
- Одноразовый блокнот
- Глава 8. Получение случайных чисел и букв Случайные последовательности
- Получение случайных последовательностей
- Бросание монеты
- Бросание костей
- Извлечение из урны (по типу лотереи)
- Космические лучи
- Шум от усилителей
- Псевдослучайные последовательности
- Линейные рекурренты
- Использование последовательности двоичных знаков гаммы для шифрования
- Двоичные линейные последовательности как генераторы гаммы
- Криптоанализ линейной рекурренты
- Повышение стойкости двоичной гаммы
- Генераторы псевдослучайных чисел
- Метод срединных квадратов
- Линейные конгруэнтные генераторы
- Глава 9. Шифрмашина "Энигма" Историческая справка
- Первая "Энигма"
- Шифрование с использованием контактных колес
- Шифрование в "Энигме"
- Коммутатор "Энигмы"
- Ахиллесова пята "Энигмы"
- Цепочки индикаторов в "Энигме"
- Выравнивание цепочек
- Идентификация колеса r1 и его угловой установки
- Двойное шифрование в "Энигме"
- "Энигма" Абвера
- Глава 10. Шифрмашина "Хагелин" Историческая справка
- Конструкция шифрмашины «Хагелин»
- Шифрование при помощи шифрмашины "Хагелин"
- Выбор установок барабана в шифрмашине "Хагелин"
- Теоретический объем перебора для шифрмашины "Хагелин"
- Вскрытие установок "Хагелина" по отрезку гаммы
- Дополнительные возможности шифрмашины "Хагелин"
- Смещение
- Определение смещения по шифрованному тексту
- Перекрытия
- Вскрытие шифрмашины "Хагелин" только по шифрованному тексту
- Глава 11. После "Энигмы" sz42 - предтеча электронных машин
- Описание шифрмашины sz42
- Шифрование в машине sz42
- Вскрытие шифрмашины sz42 и определение ее угловых установок
- Модификации шифрмашины sz42
- Глава 12. Криптография с открытым ключом Историческая справка
- Вопросы безопасности
- Защита программ и данных
- Шифрование программ, данных и сообщений
- Задача распределения ключей
- Система ключевого обмена Диффи-Хеллмана
- Стойкость системы Диффи-Хеллмана
- Глава 13. Шифрование и Интернет Обобщение шифра простой замены
- Факторизация больших целых чисел
- Стандартный метод факторизации
- Малая теорема Ферма
- Теорема Ферма-Эйлера (для случая системы rsa)
- Ключи зашифрования и расшифрования в системе rsa
- Процессы зашифрования и расшифрования в системе rsa
- Каким образом хозяин ключей отвечает корреспондентам?
- Американский Стандарт Шифрования Данных (des)*)
- Общие сведения
- Процедура зашифрования
- Процедура расшифрования
- Стойкость des-алгоритма
- Зацепление
- Реализации des-алгоритма
- Совместное использование алгоритмов rsa и des
- Полезное замечание
- После des-алгоритма
- Проверка подлинности сообщения и удостоверение подлинности подписи
- Криптография эллиптической кривой
- Приложение. Математические вопросы Глава 2 м1. Совпадения знаков в алфавитах замены
- М2. Снижение стойкости при использовании взаимно-обратных алфавитов
- M3. Парадокс дней рождения
- Глава 3 м4. Евклидово доказательство бесконечности множества простых чисел
- Глава 6 м5. Последовательность чисел Фибоначчи
- Глава 7 м6. Частота встречаемости букв для книжного шифра
- М7. Одноразовый блокнот дешифровать невозможно
- Глава 8 м8. Частота появления случайных чисел на странице
- М9. Комбинирование двух последовательностей двоичных знаков гаммы, имеющих отклонения
- М10. Последовательность типа Фибоначчи
- М11. Двоичные линейные рекурренты
- M12. Восстановление двоичной линейной рекурренты по отрезку гаммы
- М13. Получение псевдослучайных чисел
- Глава 9 м14. Распайка колёс шифрмашины "Энигма"
- М15. Число возможных отражателей шифрмашины "Энигма"
- М16. Вероятность одноключевых сообщений для "Энигмы"
- М17. Среднее число индикаторов, необходимое для построения полных цепочек
- Глава 10 м18. Число возможных барабанов шифрмашины "Хагелин"
- М19. Максимальная кратность значения зацепления, которая может встретиться при вычислении разности гаммы шифрмашины "Хагелин"
- M20. Определение смещения шифрмашины "Хагелин" с помощью коэффициента корреляции
- Глава 13 m21. (Порядок роста количества простых чисел)
- M22. Вычисление остатка с использованием модульной арифметики
- М23. Доказательство теоремы Ферма-Эйлера
- М24. Нахождение чисел, "предположительно" являющихся простыми
- M25. Алгоритм Евклида
- М26. Эффективность возведения в степень методом последовательного возведения в квадрат
- М27. Число ложных ответов при дешифровании des-алгоритма методом "встречного поиска "
- М28. Криптография эллиптической кривой
- Решения задач Глава 2
- Глава 3
- Глава 4
- Глава 5
- Глава 6
- Глава 7
- Глава 8
- Глава 9
- Глава 10
- Глава 11
- Глава 13
- Литература
- Глава 1
- Глава 2
- Глава 3
- Глава 4
- Глава 5
- Глава 6
- Глава 7
- Глава 8
- Глава 9
- Глава 10
- Глава 11
- Глава 12
- Глава 13