Повышение стойкости двоичной гаммы
Очевидно, что двоичную гамму, порожденную линейной рекуррентой, вскрыть слишком просто, чтобы подобная последовательность оказалась полезной с криптографической точки зрения. Существует ли какой-нибудь способ увеличения стойкости таких последовательностей? Поскольку их слабость заключается в том, что для рекурренты степени k каждый бит является фиксированной линейной комбинацией предыдущих k битов, даже использование рекурренты высокой степени (например, если взять k=103) не обеспечивает необходимой стойкости, потому что для решения системы уравнений достаточно совсем небольшого отрезка гаммы (для k=103 необходимо всего 26 знаков). Вдобавок, получать гамму с помощью рекурренты высокой степени вручную (как пришлось бы поступить шпиону) - занятие довольно утомительное, да и ошибок можно наделать. Очень жаль, ведь гамма, полученная при помощи такой рекурренты, может иметь очень большой период (для k=103 он превосходит 1030). Конечно, большой период весьма желателен, но может быть, этого можно добиться и без использования рекурренты высокой степени, повысив одновременно стойкость? Это действительно можно сделать, комбинируя гамму от двух или более линейных рекуррент, как показано в следующем простом примере.
Пример 8.2
Вычисляя сумму (по модулю 2) двух последовательностей знаков гаммы, порожденных двумя линейными рекуррентами
Un = U(n-1) + U(n-2), U0=U1 =1
и
Un = U(n-1) + U(n-3), U0=U1=U2=1,
получить новую последовательность знаков гаммы. Проверить, что она имеет период 21.
Проверка
Первая рекуррента, как мы уже убедились, имеет период 3 и порождает последовательность знаков гаммы
110110110110...
Вторая рекуррента имеет период 7 и порождает последовательность знаков гаммы
111010011101001110100...
Подписав обе эти последовательности друг под другом и сложив их по модулю 2, получим
110110110110110110110110110...
111010011101001110100111010...
Сумма (по модулю 2) 001100101011111000010001100...
Как видно, гамма начинает повторяться после 21-го шага, но не ранее. Поскольку первая последовательность имеет период 3, а вторая имеет период 7, то период комбинированной гаммы не может быть больше 21, так как они обе повторяются через 21 шаг. С другой стороны, так как числа 3 и 7 не имеют общих делителей, то комбинированная гамма не может повториться раньше, чем через 21 шаг.
Нет никакой необходимости ограничиваться использованием только двух линейных рекуррент: можно использовать и три, и больше. Преимущество этого подхода в том, что чем больше рекуррент использовать, тем труднее криптоаналитику будет вскрыть систему. Недостатком же, если работать приходится вручную, является достаточно утомительный способ получения гаммы и высокая вероятность ошибок. Конечно, от этого недостатка можно избавиться, если у нас есть возможность выработать гамму с помощью механического или электронного устройства. Поэтому неудивительно, что появились машины, порождающие последовательности знаков гаммы большого периода, как двоичные (т.е. модуля 2), так и алфавитные (т.е. модуля 26), которые являются комбинациями нескольких более коротких последовательностей. Одной из таких машин была шифрмашина "Хагелин", широко использовавшаяся во время Второй мировой войны целым рядом стран; она вырабатывала последовательность знаков гаммы модуля 26. Другой пример - это "Lorenz SZ42", одна из шифрмашин, использовавшихся в Германии; она вырабатывала последовательность знаков гаммы модуля 2. О них рассказано в главах 10 и 11.
- Глава 1. Введение 10
- Глава 9. Шифрмашина "Энигма" 130
- Глава 10. Шифрмашина "Хагелин" 152
- Глава 11. После "Энигмы" 172
- Глава 12. Криптография с открытым ключом 179
- Глава 13. Шифрование и Интернет 188
- Предисловие
- Глава 1. Введение Некоторые аспекты безопасности связи
- Шифр Юлия Цезаря
- Несколько основных определений
- Три этапа дешифрования: идентификация, взлом системы и вскрытие ключей.
- Коды и шифры
- Оценка стойкости системы шифрования
- Коды, обнаруживающие и исправляющие ошибки
- Другие методы сокрытия содержания сообщений
- Модульная арифметика
- Модульное сложение и вычитание букв
- Заключение
- Глава 2. От Юлия Цезаря до простой замены Шифры Юлия Цезаря и их вскрытие
- Шифры простой замены
- Вскрытие шифра простой замены
- Частоты встречаемости букв в других языках, кроме английского
- Сколько знаков необходимо для дешифрования простой замены?
- Глава 3. Многоалфавитные системы Усиление системы Юлия Цезаря: шифры Вижанэра
- Вскрытие шифра Вижанэра
- Индикаторы
- Одноключевые сообщения
- Распознавание одноключевых сообщений
- Какой объем текста необходим для дешифрования шифра Вижанэра?
- Цилиндр Джефферсона
- Глава 4. Шифры-головоломки
- Перестановки
- Простая перестановка
- Двойная перестановка
- Другие виды перестановок
- Регулярные перестановочные таблицы
- Нерегулярные перестановочные таблицы
- Оценка стойкости шифров перестановки
- Общая концепция двойного шифрования
- Глава 5. Двухбуквенные шифры
- Замена "монограф-диграф"
- Мдпм-шифры
- Система "диграф-диграф"
- Шифр Плейфера*)
- Расшифрование в системе Плейфера
- Криптоаналитические аспекты системы Плейфера
- Двойной шифр Плейфера
- Глава 6. Коды Характеристики кодов
- Одночастевые и двухчастевые коды
- Код плюс аддитивное шифрование
- Глава 7. Шифры для шпионов
- Шифры-решетки
- Книжные шифры
- Использование книжного шифра
- Частоты встречаемости букв в книжных шифрах
- Вскрытие книжного шифра
- Индикаторы
- Катастрофические ошибки при использовании книжного шифра
- Шифры "агента Гарбо"
- Первый шифр "агента Гарбо"
- Второй шифр "агента Гарбо"
- Одноразовый блокнот
- Глава 8. Получение случайных чисел и букв Случайные последовательности
- Получение случайных последовательностей
- Бросание монеты
- Бросание костей
- Извлечение из урны (по типу лотереи)
- Космические лучи
- Шум от усилителей
- Псевдослучайные последовательности
- Линейные рекурренты
- Использование последовательности двоичных знаков гаммы для шифрования
- Двоичные линейные последовательности как генераторы гаммы
- Криптоанализ линейной рекурренты
- Повышение стойкости двоичной гаммы
- Генераторы псевдослучайных чисел
- Метод срединных квадратов
- Линейные конгруэнтные генераторы
- Глава 9. Шифрмашина "Энигма" Историческая справка
- Первая "Энигма"
- Шифрование с использованием контактных колес
- Шифрование в "Энигме"
- Коммутатор "Энигмы"
- Ахиллесова пята "Энигмы"
- Цепочки индикаторов в "Энигме"
- Выравнивание цепочек
- Идентификация колеса r1 и его угловой установки
- Двойное шифрование в "Энигме"
- "Энигма" Абвера
- Глава 10. Шифрмашина "Хагелин" Историческая справка
- Конструкция шифрмашины «Хагелин»
- Шифрование при помощи шифрмашины "Хагелин"
- Выбор установок барабана в шифрмашине "Хагелин"
- Теоретический объем перебора для шифрмашины "Хагелин"
- Вскрытие установок "Хагелина" по отрезку гаммы
- Дополнительные возможности шифрмашины "Хагелин"
- Смещение
- Определение смещения по шифрованному тексту
- Перекрытия
- Вскрытие шифрмашины "Хагелин" только по шифрованному тексту
- Глава 11. После "Энигмы" sz42 - предтеча электронных машин
- Описание шифрмашины sz42
- Шифрование в машине sz42
- Вскрытие шифрмашины sz42 и определение ее угловых установок
- Модификации шифрмашины sz42
- Глава 12. Криптография с открытым ключом Историческая справка
- Вопросы безопасности
- Защита программ и данных
- Шифрование программ, данных и сообщений
- Задача распределения ключей
- Система ключевого обмена Диффи-Хеллмана
- Стойкость системы Диффи-Хеллмана
- Глава 13. Шифрование и Интернет Обобщение шифра простой замены
- Факторизация больших целых чисел
- Стандартный метод факторизации
- Малая теорема Ферма
- Теорема Ферма-Эйлера (для случая системы rsa)
- Ключи зашифрования и расшифрования в системе rsa
- Процессы зашифрования и расшифрования в системе rsa
- Каким образом хозяин ключей отвечает корреспондентам?
- Американский Стандарт Шифрования Данных (des)*)
- Общие сведения
- Процедура зашифрования
- Процедура расшифрования
- Стойкость des-алгоритма
- Зацепление
- Реализации des-алгоритма
- Совместное использование алгоритмов rsa и des
- Полезное замечание
- После des-алгоритма
- Проверка подлинности сообщения и удостоверение подлинности подписи
- Криптография эллиптической кривой
- Приложение. Математические вопросы Глава 2 м1. Совпадения знаков в алфавитах замены
- М2. Снижение стойкости при использовании взаимно-обратных алфавитов
- M3. Парадокс дней рождения
- Глава 3 м4. Евклидово доказательство бесконечности множества простых чисел
- Глава 6 м5. Последовательность чисел Фибоначчи
- Глава 7 м6. Частота встречаемости букв для книжного шифра
- М7. Одноразовый блокнот дешифровать невозможно
- Глава 8 м8. Частота появления случайных чисел на странице
- М9. Комбинирование двух последовательностей двоичных знаков гаммы, имеющих отклонения
- М10. Последовательность типа Фибоначчи
- М11. Двоичные линейные рекурренты
- M12. Восстановление двоичной линейной рекурренты по отрезку гаммы
- М13. Получение псевдослучайных чисел
- Глава 9 м14. Распайка колёс шифрмашины "Энигма"
- М15. Число возможных отражателей шифрмашины "Энигма"
- М16. Вероятность одноключевых сообщений для "Энигмы"
- М17. Среднее число индикаторов, необходимое для построения полных цепочек
- Глава 10 м18. Число возможных барабанов шифрмашины "Хагелин"
- М19. Максимальная кратность значения зацепления, которая может встретиться при вычислении разности гаммы шифрмашины "Хагелин"
- M20. Определение смещения шифрмашины "Хагелин" с помощью коэффициента корреляции
- Глава 13 m21. (Порядок роста количества простых чисел)
- M22. Вычисление остатка с использованием модульной арифметики
- М23. Доказательство теоремы Ферма-Эйлера
- М24. Нахождение чисел, "предположительно" являющихся простыми
- M25. Алгоритм Евклида
- М26. Эффективность возведения в степень методом последовательного возведения в квадрат
- М27. Число ложных ответов при дешифровании des-алгоритма методом "встречного поиска "
- М28. Криптография эллиптической кривой
- Решения задач Глава 2
- Глава 3
- Глава 4
- Глава 5
- Глава 6
- Глава 7
- Глава 8
- Глава 9
- Глава 10
- Глава 11
- Глава 13
- Литература
- Глава 1
- Глава 2
- Глава 3
- Глава 4
- Глава 5
- Глава 6
- Глава 7
- Глава 8
- Глава 9
- Глава 10
- Глава 11
- Глава 12
- Глава 13