4.1. Способы задания графов
Совокупность множества М с заданным на нем бинарным отношением ТМ2 [9] называется графом
G=<M,T>,
где М – носитель графа – множество вершин, изображаемых точками, Т – сигнатура графа – множество линий, обозначающих отношения и называемых ребрами.
Между элементами М и Т определено отношение инцидентности, т.е. связи между двумя элементами множества М через один элемент множества Т. Примеры графов: отношения отцовства и материнства на множестве людей, отношения подчиненности, карты дорог местности, электрические схемы соединений приборов и т.д.
Рис. 12. Пример графа «звезда»
М={1,2,3,4,5},
Т={(1,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,2),(4,1),(5,3),(5,2}).
Множество линий-ребер в Т задается обозначением пары (i,j), где i,j – инцидентные вершины, отношение Т – «быть связанным».
Теорию графов начали разрабатывать для решения некоторых задач о геометрических конфигурациях, состоящих из точек и линий. В этих задачах несущественно, соединены ли точки конфигурации отрезками прямых или они криволинейны, какова длина линий и другие геометрические характеристики конфигурации. Важно лишь, что каждая линия соединяет какие-либо две из заданных точек [24].
Первые серьезные результаты теории графов связаны с решением задач построения электрических цепей (Г. Кирхгоф) и подсчета числа химических соединений с различными типами молекулярных связей (А. Кэли). Изобразите в виде графа молекулу
В 30-е годы ХХ века благодаря трудам Д. Кенига [19] теория графов стала развиваться как самостоятельный раздел математики.
Широкое развитие теория графов получила с 50-х годов ХХ века в связи с появлением такой науки, как кибернетика. Графы применяют при анализе функционирования систем. С отдельными компонентами изучаемой системы удобно связывать вершины графа, а с парами взаимодействующих компонент – его ребра. Такой граф называют структурным графом системы.
В некоторых задачах существенно направление ребер графа. Направленные ребра называют дугами, а содержащий их граф – ориентированным (орграфом). Таковым графом может быть изображена диаграмма Хассе. Соответственно граф с неориентированными ребрами называется неориентированным.
Множество ребер может быть пусто. Если же множество вершин пусто, то пусто и множество ребер. Такой граф называется пустым. Линии, изображающие ребра, могут пересекаться на изображении графа, но точки их пересечений не являются вершинами. Различные ребра могут быть инцидентны одной и той же паре вершин, в этом случае они называются кратными. Граф, содержащий кратные ребра, называют мультиграфом (псевдографом). Ребро (дуга) может соединять некоторую вершину саму с собой, такое ребро (дуга) называется петлей. Будем рассматривать конечные графы, содержащие конечные множества вершин и ребер (дуг).
Рассмотрим предложенную фон Нейманом архитектуру ЭВМ, которая состоит из множества устройств М={а,b,c,d,e}, где а – устройство ввода, b – арифметическое устройство (процессор), с – устройство управления, d – запоминающее устройство, е – устройство вывода [9-10].
Информационный обмен между этими устройствами задается графом (рис. 13).
Рис. 13. Граф, описывающий архитектуру
фон Неймановской ЭВМ
Вершины графа на рис. 13 для удобства изображены кружками, а не точками, как на рис. 11.
Граф можно задать так называемой матрицей смежности, каждой i-ой строке (j-му столбцу) которой однозначно сопоставляют элемент множества М, между которыми выполняется отношение смежности. Две вершины, инцидентные одному ребру, смежны. Два ребра, инцидентные одной вершине, тоже смежны. Тогда каждая клетка bij взаимно однозначно соответствует элементам множества ММ=М2. Клетку bij, которая соответствует элементу, принадлежащему бинарному отношению ТМ2, отмечают, например, единицей, а в остальные клетки записывают нули.
Рассмотрим матрицу смежности В для графа, изображенного на рис. 13. Устройства i,j находятся в отношении Т, если из устройства i информация поступает в устройство j.
Граф можно задать и с использованием перечисления его дуг, как это сделано на рис. 13:
М={а,b,с,d,е},
Т={(а,b),(а,с),(а,d),(b,с),(b,е),(b,d),(с,а),(с,b),(с,d),(с,е),(d,с),(d,b),(d,е),(е,с)}.
Граф можно задать в виде так называемого фактор-множества, представленного парами «элемент множества М – подмножество М, представляющее собой окрестность единичного радиуса этого элемента»:
[<a,{b,c,d}>,<b,{c,d,е}>,<c,{a,b,d,e}>,<d,{b,c,e}>,<e,{c}>].
Ориентированный граф может быть задан и матрицей инцидентности А размерностью nm: A=aij, где n=|M|, m=|Т|, у которой
если вершина ai является концом дуги tj; если вершина ai является началом дуги tj; если вершина ai не инцидентна дуге tj, , .
Так, для ориентированного графа (рис. 14) матрица инцидентности имеет вид:
Рис. 14. Некоторый ориентированный граф
В описанном виде матрицы инцидентности применимы только к графам без петель, в случае наличия которых матрицу надо разбить на две полуматрицы: положительную и отрицательную. Ориентированный граф также может быть задан матрицей смежности.
Для графов с кратными ребрами в матрице смежности указывают кратность ребер, например, для графа, изображенного на рис. 15, матрица смежности представляется в виде:
Такой граф называют мультиграфом.
Рис. 15. Некоторый ориентированный мультиграф
Граф называется нагруженным, если каждому ребру (дуге) поставлено в соответствие некоторое действительное число (длина дуги, вес дуги, стоимость дуги и т.д.).
Представим в виде графа некоторые бинарные отношения [9]. Отношение Т в множестве М рефлексивно, как мы уже знаем, если для каждого элемента mМ справедливо (m,m)Т. На графе это изображается петлей (рис. 16а). На матрице смежности графа с рефлексивным отношением все элементы, лежащие на главной диагонали отмечены единицами.
Отношение во множестве М называется симметричным, если из (mi,mj)Т следует (mi,mj)М, mimj (рис. 16б). Матрица смежности симметричного отношения симметрична относительно главной диагонали.
Отношение Т в множестве М называется транзитивным, если из (mi,mj)Т, (mi,mk)Т следует (mi,mk)Т mi, mj,mkМ, mimj, mimk, mjmk (рис. 16в).
В графе, задающем транзитивное отношение Т, для всякой пары дуг таких, что конец первой совпадает с началом второй, существует транзитивно замыкающая дуга, имеющая общее начало с первой и общий конец со второй.
Рис. 16. Изображения бинарных отношений в виде графа
а) рефлексивное отношение, б) симметричное отношение,
в) транзитивное отношение
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации