3.7. Бином Ньютона
Имеется формула, называемая биномом Ньютона, которая использует выражения числа сочетаний с повторениями
где а, b – действительные или комплексные числа.
Например:
Коэффициенты называются биномиальными.
Докажем формулу бинома Ньютона по индукции. Доказательство по индукции предполагает:
1) базис индукции – доказательство того, что формула верна для конкретного n, например, для n=1. В нашем случае мы убедились, что формула верна для n=2,3,4. Убедимся, что она верна и для n=1.
2) индукционный шаг. Предполагая, что формула верна для некоторого n, убеждаются, что тогда она верна и для n+1.
3) при истинности шагов 1 и 2 заключают, что формула верна для любого n.
Приступим к индукционному шагу.
Возьмем выражение и получим из него выражение дляn+1. Очевидно, что это можно сделать путем умножения на a+b:
Преобразуем полученное выражение:
Для выполнения индукционного шага необходимо показать, что это выражение равно выражению:
.
Рассмотрим подвыражение выражения (1):и заменимi на i-1.
Получим , т.е. одинаковые коэффициентыперед выражениями,для числа сочетаний в первом и втором подвыражении выражения (1).Это позволит вынестиза скобку. Но тогда вне учтенn-й член подвыражения (суммирование идет доn): тогда, учитывая его, получаем:
Нетрудно видеть, что можно заменитьна, кроме того, мы уже доказали, что, поэтому: , что, очевидно, равно выражению:
.
По индукции получаем, что формула бинома Ньютона верна для любого n.
С использованием бинома Ньютона докажем следствие №1 о количестве подмножеств множества из n элементов:
Рассмотрим следствие №2: .
На использовании бинома Ньютона основано понятие производящей функции – функции, позволяющей получать комбинаторные числа без вычисления факториала:
. Здесь – функция, производящая биномиальные коэффициенты.
При n=1 получаем 1+x, т.е. (коэффициент перед 1),(коэффициент передx).
При n=2 получаем (1+x)2=1+2x+x2, т.е. и т.д.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации