3.5. Сочетания
В ряде комбинаторных задач требуется определить число k-элементных подмножеств множества из n элементов. В этом случае порядок следования компонентов несущественен, т.е. производится неупорядоченная выборка.
В результате получают так называемые сочетания без повторения.
Сочетаниями без повторений из n элементов по k называются отличающиеся друг от друга хотя бы одним элементом выборки длины k, составленные из n элементного множества.
Число сочетаний без повторений из n элементов по k, обозначаемое как определяется, исходя из числа размещений без повторений с учетом того, что различных неупорядоченных векторов (подмножеств исходного множества) будет меньше в число раз, соответствующее числу перестановок без повторений изk элементов:
.
Пример. Определить число двухэлементных подмножеств множества, состоящего из трех элементов. Перечисляем все двухэлементные подмножества множества Х={х1,х2,х3}:
{х1,х2},{х1,х3},{х2,х3}.
Здесь мы имеем дело с сочетаниями из 3-х по 2:
.
Это величина в 2! раза меньше, чем число размещений из , поскольку компоненты двухэлементных векторов можно переставить Р2=2! способами.
Пример. Сколькими способами можно выбрать 3 различных комбайна из 5 имеющихся?
Число размещений из 5 по 3 без повторений: =543=60.
Один и тот же набор комбайнов можно получить различными способами, например, векторы (а,b,с) и (b,а,с) дают один и тот же набор. Поскольку три элемента можно переставить Р3=3!=6 способами, то число способов выбора различных 3 комбайнов равно
.
В ряде комбинаторных задач требуется подсчитывать число различных составов векторов длины k из n элементного множества. Такие векторы-составы называются сочетаниями с повторениями из n элементов по k.
Например, требуется составить механизированные бригады из 3 комплексов 2 типов и определить количество таких бригад. Порядок следования комплексов в векторе бригады роли не играет, а каждая бригада задается вектором длины 3 из 2 элементов, порядок компонент которого роли не играет.
Получаем сочетания с повторениями из 2 элементов по 3:
(m1,m1,m1),(m1,m2,m2),(m1,m1,m2),(m2,m2,m2),
где m означает тип комплекса.
Итак, возможно построить бригаду из трех комплексов первого типа, трех комплексов второго типа, двух комплексов второго типа и одного первого и, наконец, двух комплексов первого типа и одного второго, т.е. четырьмя способами.
Определение числа сочетаний с повторениями можно произвести следующим образом [24].
Каждому сочетанию с повторениями из 2 по 3 ставится в однозначное соответствие вектор длины n+k-1=2+3-1=4, состоящий из 3 нулей и n-1=1 единицы:
Количество комплексов 1-го типа | Разделитель | Количество комплексов 2-го типа | Состав вектора бригады |
000 | 1 |
| (m1,m1,m1) |
0 | 1 | 00 | (m1,m2,m2) |
00 | 1 | 0 | (m1,m1,m2) |
| 1 | 000 | (m2,m2,m2) |
В таком случае число сочетаний с повторениями, которое обозначается , равно числу перестановок с повторениями данного состава (вектор имеет одну единицу и три нуля), т.е. Р(3,1)==4.
В общем случае, это выражение имеет вид
,
что соответствует выражению
.
Например, требуется составить подразделения из 6 рабочих 4 специальностей и определить количество способов формирования таких подразделений.
Получаем сочетания с повторениями из 4-х элементов по 6:
.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации