9.1. Основные определения теории конечных автоматов
Конечным автоматом (просто автоматом) называется система (пятерка) [19]:
S=<X,Y,Z,,>,
в которой Х={х1,х2,...,хi} – конечное входное множество (входной алфавит); Y={y1,y2,...,yj} – конечное множество внутренних состояний автомата (алфавит состояний); Z={z1,z2,...,zk} – конечное выходное множество (выходной алфавит); – функция переходов (из состояния в другие состояния); – функция выходов.
Если указанные множества бесконечные, то это уже не конечный автомат, но может быть дискретный автомат.
Если функция переходов – вероятностная, то это недетерминированный автомат.
Если в автомате выделено одно состояние, называемое начальным (обычно это y1), то полученный автомат называется инициальным и обозначается <S,y>. Таким образом, по неинициальному автомату с i состояниями можно i различными способами определить инициальный автомат.
Функция переходов представляет собой отображение вида : или в другом виде:
y(t+1)=[x(t),y(t)],
где x(t),y(t),y(t+1) – конкретные символы алфавитов Х и Y соответственно в моменты автоматного времени t, t+1 (в тактах t и t+1); y(t) называется текущим внутренним состоянием при соответствующем х(t), а y(t+1) – последующим внутренним состоянием.
Иначе говоря, функция переходов определяет последующее состояние автомата по заданному текущему и входному символу.
Функция выходов представляет собой отображение вида : ХYZ или в другом виде:
z(t)=[x(t),y(t)],
где x(t),y(t),z(t) – конкретные символы алфавитов X,Y,Z соответственно. Мы не будем особо выделять последующие значения x(t+1) и z(t+1), поэтому зависимость от t будем указывать только для внутреннего состояния, чтобы отделять y(t) от y(t+1).
Указанная функция выходов – функция так называемого автомата Мили.
В теории конечных автоматов рассматривается также автомат Мура, у которого функция выходов проще: : илиz(t)=[y(t)].
Автомат называется комбинационным, если для любого входного символа х и любых состояний yi, yj (х,yi)=(х,yj)=z, иначе говоря, если выходной символ z не зависит от состояния и определяется текущим входным символом. Говорят, что у такого частного класса автомата все состояния эквивалентны и, следовательно, комбинационный автомат имеет одно состояние. Такой автомат задается тройкой:
S=<X,Z,>.
Рассмотрим представление конечного автомата в виде «черного» ящика (рис. 51).
Рис. 51. Конечный автомат (КА) в виде «черного» ящика
В комбинационном автомате внутренних состояний не указывают.
Входное слово – последовательность входных символов.
Выходное слово – последовательность выходных символов, соответствующих входному слову. В конечном автомате также выделяется последовательность символов внутренних состояний, соответствующих входному слову.
Большой вклад в теорию дискретных (цифровых) автоматов внесли отечественные ученые: М.А. Гаврилов, который опубликовал первую в мире монографию «Теория релейно-контактных схем» (1950 г.), В.М. Глушков, В.Н. Рогинский, П.П. Пархоменко, В.Г. Лазарев, С.И. Баранов, А.Д. Закревский, Э.А. Якубайтис, С.В. Яблонский, В.И. Варшавский и др.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации