6.2. Элементарные переключательные (логические) функции двух переменных
Рассмотрим все функции двух переменных (табл. 25).
Таблица 25
Переключательные функции двух переменных
-
20
21
22
23
Набор
Название
Формула
20
х1
0
1
0
1
функции
21
х2
0
0
1
1
f0
0
0
0
0
Константа 0
0
f1
1
0
0
0
Функция Пирса (Вебба), «стрелка Пирса», ИЛИ-НЕ
х1х2=
f2
0
1
0
0
Запрет х2
f3
1
1
0
0
Отрицание х2
f4
0
0
1
0
Запрет х1
f5
1
0
1
0
Отрицание х1
f6
0
1
1
0
Сложение (сумма) по mod2
х1х2=
f7
1
1
1
0
Функция Шеффера, «штрих Шеффера»,
И-НЕ
х1|х2=
f8
0
0
0
1
Конъюнкция, И
х1х2
f9
1
0
0
1
Эквиваленция
(эквивалентность)
х1х2=
f10
0
1
0
1
Повторение х1
х1
f11
1
1
0
1
Импликация х2 в х1
х2х1
f12
0
0
1
1
Повторение х2
х2
f13
1
0
1
1
Импликация х1 в х2
х1х2
f14
0
1
1
1
Дизъюнкция, ИЛИ
х1х2
f15
1
1
1
1
Константа 1
1
Всего таких функций имеется 222=24=16. Есть функции, зависящие только от одной переменной. Есть функции, не зависящие от переменных, – константы 0, 1. Такие функции называют вырожденными:
f3(x1x2)=;f5(x1x2)=;f10(x1x2)=х1; f12(x1x2)=х2;
f0(x1x2)=0; f15(x1x2)=1.
Некоторые функции мы тоже уже знаем: конъюнкцию f8(x1x2)=х1х2 (точку между х1 и х2 опускаем); эквиваленцию (эквивалентность) f9(x1x2)=х1х2=х1х2(здесь эквиваленция представлена в виде дизъюнкции двух конъюнкций, что можно доказать, составив таблицу истинности); импликациюf11(x1x2)=х2х1=х1, f13(x1x2)=х1х2=х2; дизъюнкцию f14(x1x2)=х1х2.
Кроме этого, имеются другие функции, зависящие от двух переменных: f1(x1x2)=– функция Пирса (Вебба) («стрелка Пирса»);f2(x1x2)=– запрет х2; f4(x1x2)=– запрет х1; f6(x1x2)=x1x2 –сложение по модулю 2 (функция, инверсная эквиваленции); f7(x1x2)=– функция Шеффера («штрих Шеффера»).
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации