§ 1. Правило перехода от векторной записи уравнения к скалярной
Пусть даны векторы и . Надо найти вектор и вычислить его модуль, причем задана система координат XOY (рис. 1). По правилу треугольника найдем вектор и определим проекции всех трех векторов на оси.
Итак, вектор . На рисунке 2 нетрудно увидеть, что соотношения между проекциями векторов будут иметь вид
аесли была бы и третья осьZ, то проекция . Как можно истолковать полученный результат?
Всякое векторное уравнение можно представить в скалярном виде, заменив все векторы их проекциями на оси, не меняя знаков между членами уравнения. Последнее означает, что знак «+» в векторном равенстве сохраняется при записи его в проекциях на оси. Это правило перехода от векторной записи уравнения к скалярной его записи в проекциях на оси и позволяет производить вычисления модуля искомой векторной величины (например ), если заданы модули других векторов (и). Например, пусть , а . Чему равна величина с, если (рис. 2)? Как вам надо действовать? Надо найти проекции векторов на оси, изобразив их на чертеже. Очевидно, что ах = 0, , , . И т. к. вместо можно записать:
то ,.
Но, если известны проекции вектора на оси и, то
.
Итак, если задано векторное уравнение, например , связывающее один вектор () с двумя другими ( и ), и заданы модули двух векторов (а и ), то, чтобы найти искомый модуль с, надо поступать следующим образом:
1. Зная векторное уравнение , надо перейти к уравнениям в проекциях векторов на оси:
Найти проекции каждого из векторов ина оси (и,и ) и проекции искомого вектора (и ).
Найти искомый модуль вектора , пользуясь равенством
Задачи для самоконтроля № 1 – 7
- Псков, 2010
- Предисловие от составителя сборника
- Часть 1. Классическая механика Кинематика
- § 1. Правило перехода от векторной записи уравнения к скалярной
- § 2. Примеры решения задач на тему «Перемещение, путь»
- §3.Примеры решения задач на тему «Равномерное прямолинейное движение»
- § 4. Общий план решения физических задач
- § 5. Алгоритм решения задач по кинематике
- § 6. Движение тела под действием силы тяжести
- 2. Движение тела, брошенного горизонтально
- § 7. Примеры решения задач «Кинематика абсолютно твердого тела»
- § 8. Алгоритм решения задач по «Закону сложения скоростей»
- 1. Выбрать подвижную со, неподвижную со, тело.
- 3. Движение по окружности
- § 10. Примеры решения задач «Закон всемирного тяготения»
- § 11. Центр тяжести. Центр масс тела
- § 12. Общие условия равновесия абсолютно твердого тела. Алгоритм решения задач по статике
- 1. Выбрать систему отсчета.
- Законы сохранения
- § 13. Алгоритм решения задач на закон сохранения импульса.
- 1. Выбрать систему отсчета.
- § 14. Примеры решения задач на вычисление работы, мощности, кпд.
- § 16. Алгоритм решения задач на закон сохранения и превращения механической энергии
- (16.11)
- 2. От чего зависит период колебаний пружинного маятни-
- § 18. Свободные колебания математического маятника
- § 19. Примеры решения задач на тему «Механические колебания»
- (19.1) (19.2)
- § 20. Примеры решения задач на тему «Механические волны»
- Задачи для самоконтроля
- Глава I.Основы кинематики
- 1. Действие с векторами
- 2. Путь и перемещение
- 3. Равномерное движение
- 4. Неравномерное движение. Равнопеременное движение
- Комбинированные задачи
- 5. Движение тела под действием силы тяжести
- 5. 1. Движение тела по вертикали
- 5.2. Движение тела, брошенного горизонтально
- 5.3. Движение тела, брошенного под углом к горизонту
- 6. Движение материальной точки по окружности. Кинематика абсолютно твердого тела.
- 7. Закон сложения перемещений и скоростей
- Глава II. Основы динамики
- Движение под действием нескольких сил
- 2. Движение по наклонной плоскости
- 3. Движение по окружности
- 4. Движение связанных тел
- 5. Закон всемирного тяготения. Искусственные спутники Земли.
- Глава III. Статика
- 1. Статика материальной точки
- 2. Статика абсолютно твёрдого тела. Центр масс тела
- Глава IV. Законы сохранения
- 1. Закон сохранения импульса
- 2. Работа. Мощность. Кпд
- 3. Закон сохранения и изменения механической энергии.
- Комбинированные задачи (закон сохранения механической энергии, закон сохранения импульса, законы динамики)
- Глава V. Механические колебания и волны.
- 1. Механические колебания
- 1.1. Кинематика колебаний
- 1.2. Динамика и энергия колебаний
- 2. Механические волны
- Часть 2. Квантовая и атомная физика
- 2. Постулаты Бора
- Обобщенные планы
- 2. Работа выхода электронов, эВ
- 3. Таблица значений синусов, косинусов, тангенсов
- 4. Приставки для образования десятичных кратных и дольных единиц.
- Список литературы:
- 6. Марон а. Е., Куперштейн ю. С. Опорные конспекты и дифференцированные задачи. Физика. 9 кл.: - Псков, 1994.
- 7. Мощанский в. Н. Физика. 9 кл.: Учебник для общеобразовательных учреждений заведений. - м.: Просвещение, 1994
- 8. Мякишев г. Я., Буховцев б. Б. Физика. 11 кл.: - м.: Просвещение, 1990
- 11. Рымкевич а. П. Сборник задач по физике. 8 – 10 классы. - м.: Просвещение, 1984, 1987.
- Часть 1. Классическая механика