Классификация иис. Системы с интеллектуальным интерфейсом
Интеллектуальная информационная система (ИИС) - комплекс программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.[1] ИИС являются разновидностью интеллектуальной системы, а также одним из видов информационных систем.
Интеллектуальная информационная система (ИИС) основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.
Для ИИС характерны следующие признаки:
-
развитые коммуникативные способности;
-
умение решать сложные плохо формализуемые задачи;
-
способность к самообучению;
-
адаптивность.
Классификация:
(Каждый класс интеллектуальных информационных систем содержит подклассы)
На рисунке приведена классификация ИИС, признаками которой являются следующие интеллектуальные функции:
-
коммуникативные способности - способ взаимодействия конечного пользователя с системой;
-
решение сложных плохо формализуемых задач, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределенностью и динамичностью исходных данных и знаний;
-
способность к самообучению - умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;
-
адаптивность - способность системы к развитию в соответствии с объективными изменениями области знаний.
Система с интеллектуальным интерфейсом – это интеллектуальная информационная система, предназначенная для поиска неявной информации в базе данных или тексте для произвольных запросов, составленных на ограниченном естественном языке.
Существуют следующие виды таких систем:
1) Интеллектуальные базы данных – отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. В них осуществляется поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме.
2) Естественно-языковой интерфейс применяется для доступа к интеллектуальным базам данных, контекстного поиска, голосового ввода команд в системах управления, машинного перевода с иностранных языков. Он предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для реализации естественно-языкового интерфейса необходимо решить задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям. Синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей. Семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний заключается в преобразовании цифрового представления информации в представление на естественном языке.
3) Гипертекстовые системы предназначены для поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются от обычных более сложной семантической организацией ключевых слов, которая отражает различные смысловые отношения терминов. Механизм поиска работает сначала с базой знаний ключевых слов, а уже затем – с текстом. Аналогично может проводиться поиск мультимедийной информации, включающей кроме текстовой и цифровой информации графические, аудио- и видеообразы.
4) Системы контекстной помощи относятся к классу систем распространения знаний. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в интеллектуальных системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы используются как приложения к системам документации (например, технической документации по эксплуатации товаров).
5) Системы когнитивной графики (когнитивный – способствующий пониманию) ориентированы на общение ИИС с пользователем посредством графических образов, которые генерируются в соответствии с происходящими событиями. Когнитивная графика позволяет в наглядном виде представить множество параметров изучаемого явления, освобождает пользователя от анализа стандартных ситуаций, способствует быстрому освоению программных средств.
Такие системы используются в мониторинге и управлении оперативными процессами, в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, в оперативных системах принятия решений, работающих в режиме реального времени, в распознавании графических образов (например, при обработке космической информации).
- Многокритериальное пр. Качественный и количественный анализ. Пространственные модели.
- Пр в условиях неопределенности. Парадигма анализа решений. Деревья решений.
- Теория полезности. Принцип максимальной ожидаемой полезности. Методы прямого построения функции полезности
- Теория полезности. Основные свойства функции полезности. Учет отношения к риску в функции полезности.
- Теория полезности. Обоснование s- образности кривой полезности.
- Теория полезности. Определение отношения к риску на основе понятия детерминированного эквивалента.
- Определение детерминированного эквивалента. Детерминированный эквивалент для выпуклой и вогнутой функции.
- Стратегическая эквивалентность функций полезности. Линейная функция полезности.
- Логарифмическая функция полезности. Пример.
- Экспоненциальная функция полезности. Пример.
- Квадратичная функция полезности. Пример.
- Теоремы о несклонности к риску. Надбавка за риск.
- Теоремы о склонности к риску. Надбавка за риск.
- Пример функции полезности для лпр несклонного к риску.
- Пример функции полезности для лпр склонного к риску.
- Мера несклонности к риску. Обоснование. Интерпретация функции несклонности к риску.
- Связь между надбавкой за риск и функцией несклонности к риску.
- Особенности и признаки интеллектуальности информационных систем.
- Классификация иис. Системы с интеллектуальным интерфейсом
- Экспертные системы. Архитектура экспертной системы. Назначение составных частей эс.
- База знаний и механизм вывода на знаниях. Сравнительный анализ.
- Этапы создания экспертной системы. Идентификация предметной области. Построение концептуальной модели. Типы моделей
- Этапы проектирования экспертной системы. Формализация базы знаний. Классификация моделей представления знаний
- Особенности знаний и их отличие от данных. Декларативные и процедурные знания. Системы, основанные на знаниях. Этапы трансформации данных и знаний. Базы данных и базы знаний
- Самообучающиеся системы. Технологии olap и Data Mining. Определение Data Mining. Основные типы закономерностей, извлекаемых с помощью Data Mining
- Индукция и дедукция. Алгоритм индуктивного обучения. Деревья решений
- Искусственные нейронные сети. Обучение нейронных сетей
- Системы, основанные на прецедентах (Case Based Reasoning)
- Прямой логический вывод в эс на основе правила Modus Ponens.
- Обратный логический вывод в эс на основе правила Modus Ponens
- Семантические сети. Основные типы отношений в семантических сетях. Правила построения семантических сетей
- Теория фреймов. Структура фрейма. Слоты и присоединенные процедуры. Механизм вывода на фреймах
- Механизм вероятностного вывода на основе правил Байеса и коэффициентов уверенности
- Основные понятия теории нечетких множеств. Операции над нечеткими множествами. Понятия нечеткой и лингвистической переменной. Основы нечеткого логического вывода.
- Понятие нечеткого высказывания и нечеткого предиката
- Формирование базы правил систем нечеткого вывода
- Фаззификация
- Агрегирование
- Активизация
- Аккумуляция
- Понятие онтологии. Классификация онтологий и их применение.
- Редакторы онтологий, формализмы и форматы представления онтологий
- Подход к формированию онтологий в редакторе Protégé. Последовательность создания онтологий
- 37.2. Последовательность создания онтологий.
- Элементы фреймовых онтологий – классы, экземпляры, слоты (типы значений, кардинальность), отношения и т.Д.
- Язык создания экспертных систем clips: поддерживаемые парадигмы, основные структуры данных, конструкции языка для обработки данных и осуществления вывода.