logo
ГОСы / FBI_IIS_2016

Этапы проектирования экспертной системы. Формализация базы знаний. Классификация моделей представления знаний

Этапы разработки экспертных систем (ЭС) имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.

При разработке ЭС, как правило, используется концепция "быстрого прототипа". Суть этой концепции состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой - время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора программных средств. Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия экспертных систем, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.

Рисунок 1.4 Технология разработки ЭС

Различают следующие источники неудач в работе системы: тестовые примеры, ввод-вывод, правила вывода, управляющие стратегии.

Показательные тестовые примеры являются наиболее очевидной причиной неудачной работы экспертных систем. Поэтому при подготовке тестовых примеров следует классифицировать их попод проблемам предметной области, выделяя стандартные случаи, определяя границы трудных ситуаций и т.п.

Критерии оценки ЭС зависят от точки зрения. При тестировании промышленной системы превалирует точка зрения инженера по знаниям, которого в первую очередь интересует вопрос оптимизации представления и манипулирования знаниями. И, наконец, при тестировании ЭС после опытной эксплуатации оценка производится с точки зрения пользователя, заинтересованного в удобстве работы и получения практической пользы.

В ходе разработки экспертных систем почти всегда осуществляется ее модификация. Выделяют следующие виды модификации системы: переформулирование понятий и требований, переконструирование представления знаний в системе и усовершенствование прототипа.

На этапе формализации базы знаний осуществляется выбор метода представления знаний.

Рассмотрим классификацию методов представления знаний (рис. 2.4).

 

Рис. 2.4. Классификация методов представления знаний

Известно, что используемые в экспертных системах данные являются плохо формализуемыми. При более структурированных знаниях выбирают правила, как средство представления знаний. В противном случае переходят к объектно-ориентированному моделированию.

При формализации базы знаний посредством правил используются следующие методы представления знаний:

· Логическая модель описывает как объекты, так и правила с помощью предикатов первого порядка и является строго формализованной моделью с универсальным дедуктивным и монотонным методом, использующей логический вывод "от цели к данным".

· Продукционная модель позволяет использовать эвристические методы вывода для правил и может обрабатывать неопределенности в виде условных вероятностей или коэффициентов уверенности, а также выполнять монотонный или немонотонный вывод.

При формализации базы знаний посредством объектов существуют следующие методы:

· Семантическая сеть отображает разнообразные отношения объектов.

· Фреймовая модель как частный случай семантической сети использует для реализации операционного знания присоединенные процедуры.

· Объектно-ориентированная модель как развитие фреймовой модели, реализуя обмен сообщениями между объектами, в большей степени ориентирована на решение динамических задач и отражение поведенческой модели.