Этапы создания экспертной системы. Идентификация предметной области. Построение концептуальной модели. Типы моделей
Рисунок 1 - Этапы создания экспертной системы
Идентификация проблемной области. Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.
Начало работ по созданию экспертной системы инициируют руководители компаний (предприятий, учреждений). Как правило, назначение экспертной системы связано с одной из следующих областей:
-
обучение и консультация неопытных пользователей;
-
распространение и использование уникального опыта экспертов;
-
автоматизация работы экспертов по принятию решений;
-
оптимизация решения проблем, выдвижение и проверка гипотез.
Сфера применения экспертной системы характеризует тот круг задач, который подлежит формализации, например, "оценка финансового состояния предприятия", "выбор поставщика продукции", "формирование маркетинговой стратегии" и т.д.
Обычно различают три стратегии разработки экспертных систем [74]:
-
широкий набор задач, каждая из которых ориентирована на узкую проблемную область;
-
концентрированный набор задач, определяющий основные направления повышения эффективности функционирования эко-номического объекта;
-
комплексный набор задач, определяющий организацию всей деятельности экономического объекта.
После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами определяют:
-
класс решаемых задач (прогнозирование, планирование, проектирование, мониторинг, управление);
-
критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);
-
критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потреб-ностей пользователей, сокращение сроков принятия решений);
-
цели решаемых задач;
-
подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);
-
исходные данные (совокупность используемых факторов);
-
особенности используемых данных (определенность / неопределенность, статичность / динамичность, одноцелевая / многоцелевая направленность, единственность / множественность источников знаний).
Построение концептуальной модели. На этапе построения концептуальной модели создается целостное и системное описание используемых знаний, отражающее сущность функционирования проблемной области.
От качества построения концептуальной модели проблемной области во многом зависит, насколько часто в дальнейшем по мере развития проекта будет выполняться переработка базы знаний.
Хорошая концептуальная модель может только уточняться (детализироваться или упрощаться), но не перестраиваться.
Результат построения концептуальной модели обычно представляется в виде наглядных графических схем:
-
объектная модель описывает структуру предметной области как совокупности взаимосвязанных объектов;
-
функциональная модель отражает действия и преобразования над объектами;
-
поведенческая модель рассматривает взаимодействия объектов во временном аспекте.
Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а, следовательно, и ориентированные на них методы представления знаний.
Типы моделей. Рассмотрим классификацию методов представления знаний:
-
логическая модель реализует и объекты, и правила с помощью предикатов первого порядка, является строго формализованной моделью с универсальным дедуктивным и монотонным методом логического вывода "от цели к данным";
-
продукционная модель реализует эвристические методы вывода на правилах и может обрабатывать неопределенности в виде условных вероятностей или коэффициентов уверенности, а также выполнять монотонный или немонотонный вывод;
-
семантическая сеть отображает разнообразные отношения объектов; фреймовая модель, как частный случай семантической сети, использует для реализации операционного знания присоединенные процедуры;
-
объектно-ориентированная модель, как развитие фреймовой модели, реализуя обмен сообщениями между объектами, в большей степени ориентирована на динамические задачи и отражение поведенческой модели.
- Многокритериальное пр. Качественный и количественный анализ. Пространственные модели.
- Пр в условиях неопределенности. Парадигма анализа решений. Деревья решений.
- Теория полезности. Принцип максимальной ожидаемой полезности. Методы прямого построения функции полезности
- Теория полезности. Основные свойства функции полезности. Учет отношения к риску в функции полезности.
- Теория полезности. Обоснование s- образности кривой полезности.
- Теория полезности. Определение отношения к риску на основе понятия детерминированного эквивалента.
- Определение детерминированного эквивалента. Детерминированный эквивалент для выпуклой и вогнутой функции.
- Стратегическая эквивалентность функций полезности. Линейная функция полезности.
- Логарифмическая функция полезности. Пример.
- Экспоненциальная функция полезности. Пример.
- Квадратичная функция полезности. Пример.
- Теоремы о несклонности к риску. Надбавка за риск.
- Теоремы о склонности к риску. Надбавка за риск.
- Пример функции полезности для лпр несклонного к риску.
- Пример функции полезности для лпр склонного к риску.
- Мера несклонности к риску. Обоснование. Интерпретация функции несклонности к риску.
- Связь между надбавкой за риск и функцией несклонности к риску.
- Особенности и признаки интеллектуальности информационных систем.
- Классификация иис. Системы с интеллектуальным интерфейсом
- Экспертные системы. Архитектура экспертной системы. Назначение составных частей эс.
- База знаний и механизм вывода на знаниях. Сравнительный анализ.
- Этапы создания экспертной системы. Идентификация предметной области. Построение концептуальной модели. Типы моделей
- Этапы проектирования экспертной системы. Формализация базы знаний. Классификация моделей представления знаний
- Особенности знаний и их отличие от данных. Декларативные и процедурные знания. Системы, основанные на знаниях. Этапы трансформации данных и знаний. Базы данных и базы знаний
- Самообучающиеся системы. Технологии olap и Data Mining. Определение Data Mining. Основные типы закономерностей, извлекаемых с помощью Data Mining
- Индукция и дедукция. Алгоритм индуктивного обучения. Деревья решений
- Искусственные нейронные сети. Обучение нейронных сетей
- Системы, основанные на прецедентах (Case Based Reasoning)
- Прямой логический вывод в эс на основе правила Modus Ponens.
- Обратный логический вывод в эс на основе правила Modus Ponens
- Семантические сети. Основные типы отношений в семантических сетях. Правила построения семантических сетей
- Теория фреймов. Структура фрейма. Слоты и присоединенные процедуры. Механизм вывода на фреймах
- Механизм вероятностного вывода на основе правил Байеса и коэффициентов уверенности
- Основные понятия теории нечетких множеств. Операции над нечеткими множествами. Понятия нечеткой и лингвистической переменной. Основы нечеткого логического вывода.
- Понятие нечеткого высказывания и нечеткого предиката
- Формирование базы правил систем нечеткого вывода
- Фаззификация
- Агрегирование
- Активизация
- Аккумуляция
- Понятие онтологии. Классификация онтологий и их применение.
- Редакторы онтологий, формализмы и форматы представления онтологий
- Подход к формированию онтологий в редакторе Protégé. Последовательность создания онтологий
- 37.2. Последовательность создания онтологий.
- Элементы фреймовых онтологий – классы, экземпляры, слоты (типы значений, кардинальность), отношения и т.Д.
- Язык создания экспертных систем clips: поддерживаемые парадигмы, основные структуры данных, конструкции языка для обработки данных и осуществления вывода.