logo
ГОСы / FBI_IIS_2016

Классификация иис. Системы с интеллектуальным интерфейсом

Интеллектуальная информационная система (ИИС) - комплекс программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.[1] ИИС являются разновидностью интеллектуальной системы, а также одним из видов информационных систем.

Интеллектуальная информационная система (ИИС) основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для ИИС характерны следующие признаки:

Классификация:

(Каждый класс интеллектуальных информационных систем содержит подклассы)

На рисунке приведена классификация ИИС, признаками которой являются следующие интеллектуальные функции:

Система с интеллектуальным интерфейсом – это интеллектуальная информационная система, предназначенная для поиска неявной информации в базе данных или тексте для произвольных запросов, составленных на ограниченном естественном языке.

Существуют следующие виды таких систем:

1) Интеллектуальные базы данных – отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. В них осуществляется поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме.

2) Естественно-языковой интерфейс применяется для доступа к интеллектуальным базам данных, контекстного поиска, голосового ввода команд в системах управления, машинного перевода с иностранных языков. Он предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для реализации естественно-языкового интерфейса необходимо решить задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям. Синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей. Семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний заключается в преобразовании цифрового представления информации в представление на естественном языке.

3) Гипертекстовые системы предназначены для поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются от обычных более сложной семантической организацией ключевых слов, которая отражает различные смысловые отношения терминов. Механизм поиска работает сначала с базой знаний ключевых слов, а уже затем – с текстом. Аналогично может проводиться поиск мультимедийной информации, включающей кроме текстовой и цифровой информации графические, аудио- и видеообразы.

4) Системы контекстной помощи относятся к классу систем распространения знаний. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в интеллектуальных системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы используются как приложения к системам документации (например, технической документации по эксплуатации товаров).

5) Системы когнитивной графики (когнитивный – способствующий пониманию) ориентированы на общение ИИС с пользователем посредством графических образов, которые генерируются в соответствии с происходящими событиями. Когнитивная графика позволяет в наглядном виде представить множество параметров изучаемого явления, освобождает пользователя от анализа стандартных ситуаций, способствует быстрому освоению программных средств.

Такие системы используются в мониторинге и управлении оперативными процессами, в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, в оперативных системах принятия решений, работающих в режиме реального времени, в распознавании графических образов (например, при обработке космической информации).