Теория полезности. Основные свойства функции полезности. Учет отношения к риску в функции полезности.
Вид и функциональная форма функции полезности говорят очень много, например, об отношении ЛПР к риску. Поэтому первоначально необходимо установить качественные характеристики функций полезности, отражающие особенности предпочтений ЛПР.
Выразив эти особенности математически, можно аналитически описать ограничения на функцию полезности, которые вытекают из наличия этих особенностей. Данный подход облегчает построение функции полезности, позволяет осуществлять автоматизацию решений.
Монотонность функции полезности
Если исходы характеризуются в деньгах, то большинство ЛПР предпочитают большую сумму меньшей. В этом случае функция полезности удовлетворяет условию:
Предпочтения для периода реагирования скорой помощи. Меньший период реагирования всегда предпочтительнее большего:
Всегда можно перейти от убывающей функции к возрастающей:
y=15-t
y – сэкономленное время по сравнению с нормативным
Пример немонотонной функции полезности:
Пример1: Вы одержали победу в телевизионном шоу, и ведущий предлагает Вам на выбор:
- Забирайте свой приз в 1000000 руб.
- Сделайте на него ставку, бросив монету. Если выпадет орел, то ничего не получите. Если решка, получите 3000000 руб.
0,5*0+0,5*3000000=1500000
Введем функцию полезности U: S → R. Обозначим Sn - состояние, соответствующее обладанию n рублей. Пусть текущие накопления составляют k рублей, т.е. начальное состояние Sk. Полученные состояния соответственно Sk+1000000 и Sk+3000000.
Замечание: При наличии изначально денежной суммы полезность не является прямо пропорциональной денежному значению (полезность первого миллиона гораздо выше, чем второго, третьего, … десятого).
В соответствии с принципом максимальной ожидаемой полезности необходимо вычислить ожидаемые полезности двух альтернатив:
EU(Принять)=
EU(Отклонить)= U(Sk+1000000)
Положим:
Тогда:
В оригинальном исследовании фактически применяемых функций полезности Грейсон (1960) обнаружил, что полезность денег почти точно пропорциональна логарифму их количества. Предположение об этом впервые высказал Бернулли (1738).
Полученные Грейсоном данные совместимы со следующей функцией полезности для диапазона n= - 150000$ до n= 800000$: U(Sn) = - 263.31 + 22.09 log (n+150000)
Предпочтения между различными уровнями задолженности могут показывать обратное поведение по отношению к вогнутости, связанной с положительными накоплениями (выпуклость). Приходим к S-образной кривой:
В положительной части кривых уклон постепенно уменьшается. В этом случае для любой лотереи L полезность решения, в котором ЛПР сталкивается с выбором в этой лотерее, меньше, чем полезность получения ожидаемого денежного выигрыша в этой лотерее U(L)<U(ES(L))
Говорят, что ЛПР с вогнутыми кривыми полезности избегают риска. В отрицательной области с выпуклыми кривыми полезности ЛПР характеризуется стремлением к риску.
Сумма, которую ЛПР готов приобрести вместо лотереи (ЛПР безразличен между выбором лотереи и этой суммой), называется детерминированным эквивалентом (эквивалентом определенности) лотереи. Разность между ожидаемым денежным значением лотереи и ее детерминированным эквивалентом называется страховой премией.
- Многокритериальное пр. Качественный и количественный анализ. Пространственные модели.
- Пр в условиях неопределенности. Парадигма анализа решений. Деревья решений.
- Теория полезности. Принцип максимальной ожидаемой полезности. Методы прямого построения функции полезности
- Теория полезности. Основные свойства функции полезности. Учет отношения к риску в функции полезности.
- Теория полезности. Обоснование s- образности кривой полезности.
- Теория полезности. Определение отношения к риску на основе понятия детерминированного эквивалента.
- Определение детерминированного эквивалента. Детерминированный эквивалент для выпуклой и вогнутой функции.
- Стратегическая эквивалентность функций полезности. Линейная функция полезности.
- Логарифмическая функция полезности. Пример.
- Экспоненциальная функция полезности. Пример.
- Квадратичная функция полезности. Пример.
- Теоремы о несклонности к риску. Надбавка за риск.
- Теоремы о склонности к риску. Надбавка за риск.
- Пример функции полезности для лпр несклонного к риску.
- Пример функции полезности для лпр склонного к риску.
- Мера несклонности к риску. Обоснование. Интерпретация функции несклонности к риску.
- Связь между надбавкой за риск и функцией несклонности к риску.
- Особенности и признаки интеллектуальности информационных систем.
- Классификация иис. Системы с интеллектуальным интерфейсом
- Экспертные системы. Архитектура экспертной системы. Назначение составных частей эс.
- База знаний и механизм вывода на знаниях. Сравнительный анализ.
- Этапы создания экспертной системы. Идентификация предметной области. Построение концептуальной модели. Типы моделей
- Этапы проектирования экспертной системы. Формализация базы знаний. Классификация моделей представления знаний
- Особенности знаний и их отличие от данных. Декларативные и процедурные знания. Системы, основанные на знаниях. Этапы трансформации данных и знаний. Базы данных и базы знаний
- Самообучающиеся системы. Технологии olap и Data Mining. Определение Data Mining. Основные типы закономерностей, извлекаемых с помощью Data Mining
- Индукция и дедукция. Алгоритм индуктивного обучения. Деревья решений
- Искусственные нейронные сети. Обучение нейронных сетей
- Системы, основанные на прецедентах (Case Based Reasoning)
- Прямой логический вывод в эс на основе правила Modus Ponens.
- Обратный логический вывод в эс на основе правила Modus Ponens
- Семантические сети. Основные типы отношений в семантических сетях. Правила построения семантических сетей
- Теория фреймов. Структура фрейма. Слоты и присоединенные процедуры. Механизм вывода на фреймах
- Механизм вероятностного вывода на основе правил Байеса и коэффициентов уверенности
- Основные понятия теории нечетких множеств. Операции над нечеткими множествами. Понятия нечеткой и лингвистической переменной. Основы нечеткого логического вывода.
- Понятие нечеткого высказывания и нечеткого предиката
- Формирование базы правил систем нечеткого вывода
- Фаззификация
- Агрегирование
- Активизация
- Аккумуляция
- Понятие онтологии. Классификация онтологий и их применение.
- Редакторы онтологий, формализмы и форматы представления онтологий
- Подход к формированию онтологий в редакторе Protégé. Последовательность создания онтологий
- 37.2. Последовательность создания онтологий.
- Элементы фреймовых онтологий – классы, экземпляры, слоты (типы значений, кардинальность), отношения и т.Д.
- Язык создания экспертных систем clips: поддерживаемые парадигмы, основные структуры данных, конструкции языка для обработки данных и осуществления вывода.