Теория полезности. Принцип максимальной ожидаемой полезности. Методы прямого построения функции полезности
Фундаментальная идея теории решений: любое ЛПР является рациональным тогда и только тогда, когда он выбирает действие, позволяющее достичь наибольшей ожидаемой полезности, усредненной по всем возможным результатам этого действия.
Методы прямого построения функции полезности.
Прямое определение полезностей исходов:
Предположим, что в результате выбора действия А имеется n возможных случайных исходов x1,x2,…,xn. Проранжируем их по предпочтительности (от наименее предпочтительного к наиболее предпочтительному);
Обозначим х0 - один из наименее предпочтительных исходов, а х* - один из наиболее предпочтительных исходов;
Положим u(х0)=0 u(x*)=1, так как полезность не абсолютна, а относительна;
Рассмотрим произвольный промежуточный исход х: х0≤x≤ х*
Найдем лотерею L=[ х*, π; х0, 1- π], такую что ЛПР безразличен к выбору между получением х наверняка и участием в этой лотерее;
Тогда (в силу безразличия) можно приравнять полезности соответствующих исходов
u(x)= π u(х*)+(1- π) u (х0);
Окончательно получаем u(x)= π, т.е. полезность исхода х равна вероятности наиболее благоприятного схода эквивалентной лотереи
Метод прямого определения полезностей может быть применен к задачам с небольшим количеством исходов
Для задач с большим количеством исходов лучше использовать другой подход на основе построения функции полезности. Этот метод предполагает:
1. Установление полезности для нескольких исходов прямым методом;
2. Подбор кривой, проходящей через найденные значения полезностей (построение функции полезности)
-
Содержание
- Многокритериальное пр. Качественный и количественный анализ. Пространственные модели.
- Пр в условиях неопределенности. Парадигма анализа решений. Деревья решений.
- Теория полезности. Принцип максимальной ожидаемой полезности. Методы прямого построения функции полезности
- Теория полезности. Основные свойства функции полезности. Учет отношения к риску в функции полезности.
- Теория полезности. Обоснование s- образности кривой полезности.
- Теория полезности. Определение отношения к риску на основе понятия детерминированного эквивалента.
- Определение детерминированного эквивалента. Детерминированный эквивалент для выпуклой и вогнутой функции.
- Стратегическая эквивалентность функций полезности. Линейная функция полезности.
- Логарифмическая функция полезности. Пример.
- Экспоненциальная функция полезности. Пример.
- Квадратичная функция полезности. Пример.
- Теоремы о несклонности к риску. Надбавка за риск.
- Теоремы о склонности к риску. Надбавка за риск.
- Пример функции полезности для лпр несклонного к риску.
- Пример функции полезности для лпр склонного к риску.
- Мера несклонности к риску. Обоснование. Интерпретация функции несклонности к риску.
- Связь между надбавкой за риск и функцией несклонности к риску.
- Особенности и признаки интеллектуальности информационных систем.
- Классификация иис. Системы с интеллектуальным интерфейсом
- Экспертные системы. Архитектура экспертной системы. Назначение составных частей эс.
- База знаний и механизм вывода на знаниях. Сравнительный анализ.
- Этапы создания экспертной системы. Идентификация предметной области. Построение концептуальной модели. Типы моделей
- Этапы проектирования экспертной системы. Формализация базы знаний. Классификация моделей представления знаний
- Особенности знаний и их отличие от данных. Декларативные и процедурные знания. Системы, основанные на знаниях. Этапы трансформации данных и знаний. Базы данных и базы знаний
- Самообучающиеся системы. Технологии olap и Data Mining. Определение Data Mining. Основные типы закономерностей, извлекаемых с помощью Data Mining
- Индукция и дедукция. Алгоритм индуктивного обучения. Деревья решений
- Искусственные нейронные сети. Обучение нейронных сетей
- Системы, основанные на прецедентах (Case Based Reasoning)
- Прямой логический вывод в эс на основе правила Modus Ponens.
- Обратный логический вывод в эс на основе правила Modus Ponens
- Семантические сети. Основные типы отношений в семантических сетях. Правила построения семантических сетей
- Теория фреймов. Структура фрейма. Слоты и присоединенные процедуры. Механизм вывода на фреймах
- Механизм вероятностного вывода на основе правил Байеса и коэффициентов уверенности
- Основные понятия теории нечетких множеств. Операции над нечеткими множествами. Понятия нечеткой и лингвистической переменной. Основы нечеткого логического вывода.
- Понятие нечеткого высказывания и нечеткого предиката
- Формирование базы правил систем нечеткого вывода
- Фаззификация
- Агрегирование
- Активизация
- Аккумуляция
- Понятие онтологии. Классификация онтологий и их применение.
- Редакторы онтологий, формализмы и форматы представления онтологий
- Подход к формированию онтологий в редакторе Protégé. Последовательность создания онтологий
- 37.2. Последовательность создания онтологий.
- Элементы фреймовых онтологий – классы, экземпляры, слоты (типы значений, кардинальность), отношения и т.Д.
- Язык создания экспертных систем clips: поддерживаемые парадигмы, основные структуры данных, конструкции языка для обработки данных и осуществления вывода.