Лекция_3(Интерполяция)
0 : Begin
{i:=1; while XX > X[i] do i:=i+1;}
j:=1; i:=N1;
While j < i-1 do if XX >= X[Trunc((i+j)/2)] then j:=Trunc((i+j)/2)
else i:=Trunc((i+j)/2);
j:=i-1; D:=X[i]-X[j]; H:=XX-X[j]; R:=X[i]-XX;
P:=D*D/6; YY:=(M[j]*R*R*R+M[i]*H*H*H)/6/D;
YY:=YY+((Y[j]-M[j]*P)*R+(Y[i]-M[i]*P)*H)/D;
end;
-1: begin
D:=X[2]-X[1]; YY:=-D*M[2]/6+(Y[2]-Y[1])/D;
YY:=YY*(XX-X[1])+Y[1];
end;
end; (* case *)
Interpolate:=YY;
end; (* Spline.Interpolate *)
procedure SplineInterpolate.Output;
Содержание
- Содержание
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание 5
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание
- 3.1. Введение
- 3.2. Интерполяция
- 3.2.1. Полиномиальная интерполяция
- Аппроксимационная теорема Вейерштрасса.
- 3.2.2. Вычисление значений многочлена. Схема Горнера
- 3.2.3. Линейная интерполяция
- 3.2.4. Квадратичная интерполяция
- 3.2.5. Построение других базисных функций
- 3.2.6. Многочлены Тейлора
- 3.2.7. Лагранжева интерполяция
- I, j, n : Integer;
- 3.2.8. Ошибки полиномиальной интерполяции
- 3.2.9. Кусочно-линейная интерполяция
- Var X,y : Array[0..N] of Real;
- I,j : Integer;
- Var f:Real;
- 3.2.10. Кусочно-кубическая интерполяция
- 3.2.11. Эрмитов кубический интерполянт
- 3.2.12. Кубические сплайны
- Var r, s, l : Vect;
- Var l, I, j : Integer;
- 1 : Begin
- 0 : Begin
- Var XX:RealType;
- 3.2.13. Кривые Безье. Сплайны
- 3.2.14. Итерационный способ вычисления интерполяционного полинома (способ Эйткена)
- 3.2.15. Интерполяционный многочлен Ньютона
- 3.2.16. Интерполяционный многочлен Гаусса
- 3.2.17. Интерполяционный многочлен Стирлинга
- 3.2.18. Интерполяционный многочлен Эверетта
- 3.3. Аппроксимация данных методом наименьших квадратов
- 3.3.1. Аппроксимация данных методом наименьших квадратов
- 3.3.2. Аппроксимация данных с другими нормами
- 3.3.3. Аппроксимация данных многочленом заданной степени
- Var X,y:array[1..Nmax] of real;
- I,n:integer;
- Литература
- Простейшие способы интерполяции
- Интерполяционные полиномы
- Сплайн-интерполяция
- Тригонометрическая интерполяция
- Неклассические методы интерполяции
- Реконструкция функций
- Всюду гладкая интерполяция