3.2.18. Интерполяционный многочлен Эверетта
Исключив из интерполяционной формулы (G*) разности нечётного порядка, получим важную формулу Эверетта:
, (E)
где , а разности, используемые в формуле, подчёркнуты в таблице
3.2.19. Интерполяционный многочлен Бесселя
Приведём формулу Бесселя
Здесь
3.2.20. Тригонометрическое интерполирование
Периодические функции интерполируют тригонометрическими многочленами вида:
Общее решение интерполяционной задачи даёт многочлен
,
где
.
Выражение существенно упрощается в случае равноотстоящих узлов
.
Именно:
.
Для чётных периодических функций интерполяционный многочлен имеет вид
.
Для нечётных периодических функций интерполяционный многочлен имеет вид
.
3.2.21. Ортогональные многочлены
Свойство ортогональности многочленов
.
Если, кроме того,
,
то говорят, что многочлены образуют отро-нормированную систему.
Ортогональные многочлены являются специальными решениями линейных однородных дифференциальных уравнений второго порядка.
3.2.22. Вычисление коэффициентов ортогонального многочлена Лагерра
Коэффициенты ортогонального многочлена Лагерра вычисляются по формуле
.
Вычисление значений многочлена Лагерра по рекуррентной формуле
.
Многочлены Лагерра. Примеры:
3.2.23. Вычисление коэффициентов ортогонального многочлена Лежандра
Коэффициенты ортогонального многочлена Лежандра вычисляются по формуле
.
Пример. .
Вычисление значений многочлена Лежандра по рекуррентной формуле
.
Многочлены Лежандра. Примеры:
3.2.24. Вычисление коэффициентов ортогональных многочленов Эрмита
Коэффициенты ортогонального многочлена Эрмита вычисляются по формуле
.
Пример. .
Вычисление значений многочлена Эрмита по рекуррентной формуле
.
Многочлены Эрмита. Примеры:
3.2.25. Вычисление коэффициентов ортогональных многочленов Чебышева
Коэффициенты ортогонального многочлена Чебышева при вычисляются по формуле
.
Пример. (коэффициенты округляются до целых чисел).
Многочлены Чебышева первого рода и второго рода вычисляются непосредственно по этим формулам или по рекуррентным соотношениям (последние дают меньшую погрешность).
Вычисление значений многочлена Чебышева по рекуррентной формуле
.
Свойства многочленов Чебышева.
При четном (нечетном) многочлен содержит только четные (нечетные) степени .
Старший коэффициент многочлена при равен .
имеет действительных корней в интервале , выражаемых формулой
.
, причем
,
где .
Многочлен ,
среди всех многочленов й степени со старшим коэффициентом, равным единице, имеет на отрезке наименьшее значение максимума модуля, т.е. не существует такого многочлена й степени со старшим коэффициентом, равным единице, что
Многочлены Чебышева. Примеры:
- Содержание
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание 5
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание
- 3.1. Введение
- 3.2. Интерполяция
- 3.2.1. Полиномиальная интерполяция
- Аппроксимационная теорема Вейерштрасса.
- 3.2.2. Вычисление значений многочлена. Схема Горнера
- 3.2.3. Линейная интерполяция
- 3.2.4. Квадратичная интерполяция
- 3.2.5. Построение других базисных функций
- 3.2.6. Многочлены Тейлора
- 3.2.7. Лагранжева интерполяция
- I, j, n : Integer;
- 3.2.8. Ошибки полиномиальной интерполяции
- 3.2.9. Кусочно-линейная интерполяция
- Var X,y : Array[0..N] of Real;
- I,j : Integer;
- Var f:Real;
- 3.2.10. Кусочно-кубическая интерполяция
- 3.2.11. Эрмитов кубический интерполянт
- 3.2.12. Кубические сплайны
- Var r, s, l : Vect;
- Var l, I, j : Integer;
- 1 : Begin
- 0 : Begin
- Var XX:RealType;
- 3.2.13. Кривые Безье. Сплайны
- 3.2.14. Итерационный способ вычисления интерполяционного полинома (способ Эйткена)
- 3.2.15. Интерполяционный многочлен Ньютона
- 3.2.16. Интерполяционный многочлен Гаусса
- 3.2.17. Интерполяционный многочлен Стирлинга
- 3.2.18. Интерполяционный многочлен Эверетта
- 3.3. Аппроксимация данных методом наименьших квадратов
- 3.3.1. Аппроксимация данных методом наименьших квадратов
- 3.3.2. Аппроксимация данных с другими нормами
- 3.3.3. Аппроксимация данных многочленом заданной степени
- Var X,y:array[1..Nmax] of real;
- I,n:integer;
- Литература
- Простейшие способы интерполяции
- Интерполяционные полиномы
- Сплайн-интерполяция
- Тригонометрическая интерполяция
- Неклассические методы интерполяции
- Реконструкция функций
- Всюду гладкая интерполяция