3.2.10. Кусочно-кубическая интерполяция
Кусочно-линейная интерполяция решает одну проблему, возникающую при полиномиальной интерполяции, – она обладает сходимостью, но порождает при этом другую проблему – недостаток гладкости: график имеет изломы. Поэтому для улучшения гладкости используют кусочно-полиномиальные функции более высокого порядка.
Кусочно-кубическим интерполянтом является кусочно-кубическая функция, которая интерполирует данные.
Требования, чтобы кусочно-кубическая функция проходила через заданные точки, недостаточно для единственности (возможны несколько кусочно-кубических интерполянтов), но если наложить условие некоторой гладкости, то можно получить единственный интерполянт.
Построить более гладкий интерполянт – это значит построить интерполянт с большим числом непрерывных на производных.
Эрмитовым кубическим интерполянтом называется кусочно-кубический интерполянт с непрерывной производной.
Кубическим сплайном называется кусочно-кубический интерполянт с двумя непрерывными производными.
Оба типа интерполянтов важны для приложений.
Сегодня известны и применяются сплайны как низких, так и более высоких степеней. Однако наиболее популярны по-прежнему кубические сплайны.
Поскольку третья производная кубической функции постоянна, то любая кусочно-кубическая функция с тремя непрерывными производными в каждом узле должны быть в точности одной и той же кубической функцией на всех интервалах, т. е. на всех интервалах используется один и тот же кубический сплайн, а не разные.
Один полином третьей степени нельзя провести более чем через четыре точки, поэтому для обеспечения гладкости интерполирующей функции, требуют непрерывности в узлах не более двух производных. Требование непрерывности третьей производной, вообще говоря, в задачах интерполяции предъявлять нельзя
- Содержание
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание 5
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание
- 3.1. Введение
- 3.2. Интерполяция
- 3.2.1. Полиномиальная интерполяция
- Аппроксимационная теорема Вейерштрасса.
- 3.2.2. Вычисление значений многочлена. Схема Горнера
- 3.2.3. Линейная интерполяция
- 3.2.4. Квадратичная интерполяция
- 3.2.5. Построение других базисных функций
- 3.2.6. Многочлены Тейлора
- 3.2.7. Лагранжева интерполяция
- I, j, n : Integer;
- 3.2.8. Ошибки полиномиальной интерполяции
- 3.2.9. Кусочно-линейная интерполяция
- Var X,y : Array[0..N] of Real;
- I,j : Integer;
- Var f:Real;
- 3.2.10. Кусочно-кубическая интерполяция
- 3.2.11. Эрмитов кубический интерполянт
- 3.2.12. Кубические сплайны
- Var r, s, l : Vect;
- Var l, I, j : Integer;
- 1 : Begin
- 0 : Begin
- Var XX:RealType;
- 3.2.13. Кривые Безье. Сплайны
- 3.2.14. Итерационный способ вычисления интерполяционного полинома (способ Эйткена)
- 3.2.15. Интерполяционный многочлен Ньютона
- 3.2.16. Интерполяционный многочлен Гаусса
- 3.2.17. Интерполяционный многочлен Стирлинга
- 3.2.18. Интерполяционный многочлен Эверетта
- 3.3. Аппроксимация данных методом наименьших квадратов
- 3.3.1. Аппроксимация данных методом наименьших квадратов
- 3.3.2. Аппроксимация данных с другими нормами
- 3.3.3. Аппроксимация данных многочленом заданной степени
- Var X,y:array[1..Nmax] of real;
- I,n:integer;
- Литература
- Простейшие способы интерполяции
- Интерполяционные полиномы
- Сплайн-интерполяция
- Тригонометрическая интерполяция
- Неклассические методы интерполяции
- Реконструкция функций
- Всюду гладкая интерполяция