3.2.11. Эрмитов кубический интерполянт
На каждом интервале функция является кубической и задаётся четырьмя коэффициентами . Для программы, основанной на таком представлении, потребуется массив для хранения и четыре массива и для коэффициентов кубической функции на каждом интервале. Это называется кусочно-кубическим представлением.
Используем другое, более наглядное представление.
Определим базисных функций и , . Пусть каждая из них является кусочно-кубической с непрерывной на производной. Тогда и любая их линейная комбинация обладает теми же свойствами. Определение этих функций должно гарантировать, что
.
В этом случае функция
является эрмитовым кубическим интерполянтом при любом выборе .
Потребуем ещё, чтобы
.
Тогда
.
Все эрмитовы кубические интерполянты представляют собой кусочно-кубические функции, интерполирующие по заданным точкам и имеющие по одной непрерывной производной. Значения производных в узлах интерполяции задаются числами . Такая форма представления особенно полезна, если, кроме самих значений в точках , известны ещё и величины углов наклона касательных к интерполируемой функции. В этом случае в качестве естественно брать заданные угловые коэффициенты.
Эрмитов кубический интерполянт не является единственным. Существует параметрическое семейство кусочно-кубических функций, которые интерполируют данных значений и имеют по одной непрерывной производной.
Детали эрмитовой кубической интерполяции.
Пусть . Определим на каждом из интервалов , , четыре кубические функции
Теперь определим и как
Положим для
а для
Наконец, определим
.
Обрисуем свойства этих функций на примере . По данному выше определению тождественно равна нулю при и .
Для имеем .
Для имеем .
Из этих формул видно, что функция определена при всех и является кусочно-полиномиальной. Она обращается в нуль в каждом узле. В точках и у неё нули второго порядка, следовательно, в этих точках и производная обращается в нуль.
В узле производную можно вычислить по одной из двух формул, в зависимости от того, приближаемся мы к слева или справа.
Производная слева равна
,
производная справа равна
.
Поскольку односторонние производные с обеих сторон равны, то .
Можно доказать, что функции и , непрерывны и имеют непрерывную производную на всем интервале , непрерывную производную имеет и сама функция , следовательно, она является эрмитовым кубическим интерполянтом. Функцию легко вычислить, если известны величины . Для нахождения интерполянта в произвольной фиксированной точке достаточно заметить, что функции и отличны от нуля не более чем на двух интервалах. Поэтому большинство членов в сумме тождественно равны нулю; надо учитывать не более четырёх слагаемых.
Итак, вычисление значения включает в себя, во-первых, локализацию в некотором интервале (между и ), во-вторых, вычисление членов , в-третьих, умножение на требуемые и и суммирование.
- Содержание
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание 5
- 3. Интерполялия, экстрополяция, аппроксимация, сглаживание
- 3.1. Введение
- 3.2. Интерполяция
- 3.2.1. Полиномиальная интерполяция
- Аппроксимационная теорема Вейерштрасса.
- 3.2.2. Вычисление значений многочлена. Схема Горнера
- 3.2.3. Линейная интерполяция
- 3.2.4. Квадратичная интерполяция
- 3.2.5. Построение других базисных функций
- 3.2.6. Многочлены Тейлора
- 3.2.7. Лагранжева интерполяция
- I, j, n : Integer;
- 3.2.8. Ошибки полиномиальной интерполяции
- 3.2.9. Кусочно-линейная интерполяция
- Var X,y : Array[0..N] of Real;
- I,j : Integer;
- Var f:Real;
- 3.2.10. Кусочно-кубическая интерполяция
- 3.2.11. Эрмитов кубический интерполянт
- 3.2.12. Кубические сплайны
- Var r, s, l : Vect;
- Var l, I, j : Integer;
- 1 : Begin
- 0 : Begin
- Var XX:RealType;
- 3.2.13. Кривые Безье. Сплайны
- 3.2.14. Итерационный способ вычисления интерполяционного полинома (способ Эйткена)
- 3.2.15. Интерполяционный многочлен Ньютона
- 3.2.16. Интерполяционный многочлен Гаусса
- 3.2.17. Интерполяционный многочлен Стирлинга
- 3.2.18. Интерполяционный многочлен Эверетта
- 3.3. Аппроксимация данных методом наименьших квадратов
- 3.3.1. Аппроксимация данных методом наименьших квадратов
- 3.3.2. Аппроксимация данных с другими нормами
- 3.3.3. Аппроксимация данных многочленом заданной степени
- Var X,y:array[1..Nmax] of real;
- I,n:integer;
- Литература
- Простейшие способы интерполяции
- Интерполяционные полиномы
- Сплайн-интерполяция
- Тригонометрическая интерполяция
- Неклассические методы интерполяции
- Реконструкция функций
- Всюду гладкая интерполяция