Глава 7. Важнейшие объектные типы Массивы
Массив (array) – это упорядоченный набор одинаково устроенных ячеек, доступ к которым осуществляется по индексу. Например, если у массива имя a1, то a1[i] – имя ячейки этого массива, имеющей с индекс i.
В Java массивы являются объектами, но особого рода – их объявление отличается от объявления других видов объектов. Переменная типа массив является ссылочной – в ней содержится адрес объекта, а не сам объект, как и для всех других объектных переменных в Java. В качестве элементов (ячеек) массива могут выступать значения как примитивных типов, так и ссылочных типов, в том числе – переменные типа массив.
Тип ячейки массива называется базовым типом для массива.
Для задания массива, в отличие от объектов других типов, не требуется предварительно задавать класс, и иметь специальное имя для данного объектного типа. Вместо имени класса при объявлении переменной используется имя базового типа, после которого идут пустые квадратные скобки.
Например, объявление
int[] a1;
задаёт переменную a1 типа массив. При этом размер массива (число ячеек в нём) заранее не задаётся и не является частью типа.
Для того, чтобы создать объект типа массив, следует воспользоваться зарезервированным словом new, после чего указать имя базового типа, а за ним в квадратных скобках число ячеек в создаваемом массиве:
a1=new int[10];
Можно совместить объявление типа переменной и создание массива :
int[] a1=new int[10];
После создания массивы Java всегда инициализированы – в ячейках содержатся нули. Поэтому если базовый тип массива примитивный, элементы массива будут нулями соответствующего типа. А если базовый тип ссылочный – в ячейках будут значения null.
Ячейки в массиве имеют индексы, всегда начинающиеся с нуля. То есть первая ячейка имеет номер 0, вторая – номер 1, и так далее. Если число элементов в массиве равно n, то последняя ячейка имеет индекс n-1. Такая своеобразная нумерация принята в языках C и C++, и язык Java унаследовал эту не очень привлекательную особенность, часто приводящую к ошибкам при организации циклов.
Длина массива хранится в поле length, которое доступно только по чтению – изменять его путём присваивания нового значения нельзя.
Пример работы с массивом:
int[] a=new int[100];
for(int i=0;i<a.length;i++){
a[i]=i+1;
};
Если у нас имеется переменная типа массив, и ей сопоставлен массив заданной длины, в любой момент этой переменной можно сопоставить новый массив. Например,
a1=new int[20];
При этом прежний объект-массив, находящийся в динамической области памяти, будет утерян и превратится в мусор.
Переменные типа массив можно присваивать друг другу. Например, если мы задали переменную
int[] a2;
то сначала в ней хранится значение null (ссылка направлена “в никуда”):
Массив с ячейками типа int
ячейка0 ячейка1 ячейка2 ячейка3 …
a1
Адрес массива
a2
Адрес=0
Присваивание
a2=a1;
приведёт к тому, что ссылочные переменные a1 и a2 будут ссылаться на один и тот же массив, расположенный в динамической области памяти.
Массив с ячейками типа int
ячейка[0] ячейка[1] ячейка[2] ячейка[3] …
a1
Адрес массива
a2
Адрес массива
То есть присваивание переменных типа массив приводит к тому, что имена переменных становятся синонимами одного и того же массива – копируется адрес массива. А вовсе не приводит к копированию элементов из одного массива в другой, как это происходит в некоторых других языках программирования.
В качестве элементов массивов могут выступать объекты. В этом случае доступ к полям и методам этих объектов производится через имя ячейки массива, после которого через точку указывается имя поля или метода. Например, если у нас имеется класс Circle (“окружность”), у которого имеются поля x, y и r, а также методы show() и hide(), то массив circles из 10 объектов такого типа может быть задан и инициализирован, например, так
int n=10;
Circle[] circles=new Circle[n];
for(int i=0;i<n;i++){
circles[i]=new Circle();
circles[i].x=40*i;
circles[i].y= circles[i].x/2;
circles[i].r=50;
circles[i].show();
};
В такого рода программах для повышения читаемости часто применяется использование вспомогательной ссылки, позволяющей избежать многократного обращения по индексу. В нашем случае мы будем использовать в этих целях переменную circle. На скорости работы программы это почти не сказывается (хотя и может чуть повысить быстродействие), но делает код более читаемым:
int n=10;
Circle[] circles=new Circle[n];
Circle circle;
for(int i=0;i<n;i++){
circle=new Circle();
circle.x=40*i;
circle.y= circles[i].x/2;
circle.r=50;
circle.show();
circles[i]= circle;
};
С помощью переменной circle мы инициализируем создаваемые объекты и показываем их на экране, после чего присваиваем ссылку на них ячейкам массива.
Двумерный массив представляет собой массив ячеек, каждая из которых имеет тип “одномерный массив”. Соответствующим образом он и задаётся. Например, задание двумерного массива целых чисел будет выглядеть так:
int[][] a=new int[10][20];
Будет задана ячейка типа “двумерный массив”, а также создан и назначен этой ссылочной переменной массив, имеющий по первому индексу 10 элементов, а по второму 20. То есть мы имеем 10 ячеек типа “одномерный массив”, каждая из которых ссылается на массив из 20 целых чисел. При этом базовым типом для ячеек по первому индексу является int[], а для ячеек по второму индексу int.
Рассмотрим работу с двумерными массивами на примере заполнения двумерного массива случайными числами:
int m=10;//10 строк
int n=20;//20 столбцов
int[][] a=new int[m][n];
for(int i=0;i<m;i++){ //цикл по строкам
for(int j=0;j<n;j++){ //цикл по столбцам
a[i][j]=(int)(100*Math.random());
System.out.print(a[i][j]+" ");
};
System.out.println();//перевод на новую строку после вывода строки матрицы
};
Многомерные массивы задаются аналогично двумерным – только указывается необходимое количество прямоугольных скобок. Следует отметить, что массивы размерности больше 3 используют крайне редко.
Обычно в двумерных и многомерных массивах задают одинаковый размер всех массивов, связанных с ячейками по какому-либо индексу. Такие массивы называют регулярными. В Java, в отличие от большинства других языков программирования, можно задавать массивы с разным размером массивов, связанных с ячейками по какому-либо индексу. Такие “непрямоугольные” массивы называют иррегулярными. Обычно их используют для экономии памяти. При работе с иррегулярными массивами следует быть особенно аккуратными, так как разный размер “вложенных” массивов часто приводит к ошибкам при реализации алгоритмов.
Пример задания иррегулярного двумерного массива треугольной формы:
int n=9;
int[][] a=new int[n][];
for(int i=0;i<a.length;i++){ //цикл по строкам
a[i]=new int[i+1]; //число элементов в строке равно i+1
for(int j=0;j<a[i].length;j++){ //цикл по столбцам
a[i][j]=100*i+j;
System.out.print(a[i][j]+" ");
};
System.out.println();//перевод на новую строку после вывода строки матрицы
};
После создания массива требуется его инициализировать – записать нужные значения в ячейки. До сих пор мы делали это путём задания значений в цикле по некоторой формуле, однако часто требуется задать конкретные значения. Конечно, можно это сделать в виде
int[] a=new int[4];
a[0]=2;
a[1]=0;
a[2]=0;
a[3]=6;
Но гораздо удобнее следующий вариант синтаксиса:
int[] a=new int[] {2,0,0,6};
При этом приходится задавать массив без указания его размера непосредственно с помощью указания значений в фигурных скобках:
В правой части оператора присваивания стоит так называемый анонимный массив – у него нет имени. Такие массивы обычно используют для инициализации, а также при написании кода для различного рода проверок.
Если мы хотим присвоить новые значения, приходится либо присваивать поэлементно, либо создавать новый объект:
a=new int[] {2,0,0,6};
При инициализации двумерных и многомерных массивов используют вложенные массивы, задаваемые с помощью фигурных скобок. Например, фрагмент кода
int[][] b= new int[][]
{
{2,0,0,0}, //это b[0]
{2,0,0,1}, //это b[1]
{2,0,0,2}, //это b[2]
{1,0,0,0}, //это b[3]
{2,0,0,0}, //это b[4]
{3,0,0,0}, //это b[5]
};
приведёт к заданию целочисленного двумерного массива b, состоящего из 6 строк и 4 столбцов, т.е. int[6][4]. Таким образом можно задавать как регулярные, так и иррегулярные массивы. Но следует помнить, что в таком варианте синтаксиса проверки правильности размера массива по индексам не делается, что может привести к ошибкам. Например, следующий код при компиляции не выдаст ошибки, а будет создан иррегулярный массив:
int[][] b= new int[][]
{
{2,0,0,0}, //это b[0]
{2,0,0,1}, //это b[1]
{2,0,0,2}, //это b[2]
{1,0,0,0}, //это b[3]
{2,0,0,0}, //это b[4]
{3,0,0}, //это b[5] – массив из трёх элементов
};
Из объектов-массивов можно вызывать метод clone(), позволяющий создавать копию (клон) массива:
a=new int[] {2,0,0,6};
int[] a1=a.clone();
Напомним, что присваивание
int[] b=a;
не приведёт к копированию массива – просто переменная b станет ссылаться на тот же объект-массив. Копирование массивов можно осуществлять в цикле, но гораздо быстрее использовать метод System.arraycopy.
int[] b=new int[a.length+10];
System.arraycopy(a,index1a,b, index1b,count);
Из a в b копируется count элементов начиная с индекса index1a в массиве a. Они размещаются в массиве b начиная с индекса index1b. Содержимое остальных элементов b не меняется. Для использования метода требуется, чтобы массив b существовал и имел необходимую длину - при выходе за границы массивов возбуждается исключительная ситуация.
Быстрое заполнение массива одинаковыми значениями может осуществляться методом Arrays.fill(массив, значение). Класс Arrays расположен в пакете java.util.
Поэлементное сравнение массива следует выполнять с помощью метода Arrays.equals(a,a1). Заметим, что у любого массива имеется метод equals, унаследованный от класса Object и позволяющий сравнивать массивы. Но, к сожалению, метод не переопределён, и сравнение идёт по адресам объектов, а не по содержимому. Поэтому a.equals(a1) это то же самое, что a==a1. Оба сравнения вернут false, так как адреса объектов, на которые ссылаются переменные a и a1, различаются. Напротив, сравнения a.equals(a3) и a==a3 вернут true, так как a и a3 ссылаются на один и тот же объект-массив.
Сортировка (упорядочение по значениям) массива a производится методами Arrays.sort(a) и Arrays.sort(a,index1,index2). Первый из них упорядочивает в порядке возрастания весь массив, второй – часть элементов (от индекса index1 до индекса index2). Имеются и более сложные методы сортировки. Элементы массива должны быть сравниваемы (поддерживать операцию сравнения).
Arrays.deepEquals(a1,a2) – сравнение на равенство содержимого массивов объектов a1 и a2 путём глубокого сравнения (на равенство содержимого, а не ссылок – на произвольном уровне вложенности).
Также в классе Arrays содержится большое число других полезных методов.
- Содержание
- Глава 1. Общие представления о языке Java 6
- Глава 2. Объектно-ориентированное проектирование и платформа NetBeans 26
- Глава 3. Примитивные типы данных и операторы для работы с ними 78
- Глава 4. Работа с числами в языке Java 95
- Глава 5. Управляющие конструкции 112
- Глава 6. Начальные сведения об объектном программировании 128
- Глава 7. Важнейшие объектные типы 175
- Введение
- Глава 1. Общие представления о языке Java
- 1.1. Java и другие языки программирования. Системное и прикладное программирование
- 1.2. Виртуальная Java-машина, байт-код, jit-компиляция. Категории программ, написанных на языке Java
- 1.3.Алфавит языка Java. Десятичные и шестнадцатеричные цифры и целые числа. Зарезервированные слова Алфавит языка Java
- Десятичные и шестнадцатеричные цифры и целые числа
- Зарезервированные слова языка Java
- 1.4. Управляющие последовательности. Символы Unicode. Специальные символы Управляющие последовательности
- Простые специальные символы
- Составные специальные символы
- 1.5.Идентификаторы. Переменные и типы. Примитивные и ссылочные типы
- Краткие итоги по главе 1
- Задания
- Глава 2. Объектно-ориентированное проектирование и платформа NetBeans
- 2.1.Процедурное и объектно-ориентированное программирование. Инкапсуляция
- 2.2. Работа со ссылочными переменными. Сборка мусора
- 2.3. Проекты NetBeans. Пакеты. Уровни видимости классов. Импорт классов
- 2.4. Базовые пакеты и классы Java
- 2.5. Создание в NetBeans простейшего приложения Java
- 2.6. Компиляция файлов проекта и запуск приложения
- 2.7. Структура проекта NetBeans
- 2.8. Создание в NetBeans приложения Java с графическим интерфейсом
- 2.9. Редактор экранных форм
- 2.10. Внешний вид приложения
- 2.11. Ведение проектов
- 2.11. Редактирование меню экранной формы
- 2.12. Создание нового класса
- 2.13. Документирование исходного кода в Java
- 2.14. Основные компоненты пакетов swing и awt
- 2.15. Технологии Java и .Net
- Краткие итоги по главе 2
- Задания
- Глава 3. Примитивные типы данных и операторы для работы с ними
- 3.1.Булевский (логический) тип
- 3.2.Целые типы, переменные, константы
- 3.3.Основные операторы для работы с целочисленными величинами
- 3.4.Вещественные типы и класс Math
- 3.5.Правила явного и автоматического преобразования типа при работе с числовыми величинами
- 3.6. Оболочечные классы. Упаковка (boxing) и распаковка (unboxing)
- 3.7.Приоритет операторов
- 3.8.Типы-перечисления (enum)
- Краткие итоги по главе 3
- Задания
- Глава 4. Работа с числами в языке Java
- 4.1 Двоичное представление целых чисел Позиционные и непозиционные системы счисления
- Двоичное представление положительных целых чисел
- Двоичное представление отрицательных целых чисел. Дополнительный код
- Проблемы целочисленной машинной арифметики
- Шестнадцатеричное представление целых чисел и перевод из одной системы счисления в другую
- 4.2. Побитовые маски и сдвиги
- 4.3. Двоичное представление вещественных чисел Двоичные дроби
- Мантисса и порядок числа
- Стандарт ieee 754 представления чисел в формате с плавающей точкой*
- Краткие итоги по главе 4
- Задания
- Глава 5. Управляющие конструкции Составной оператор
- Условный оператор if
- Оператор выбора switch
- Условное выражение …?... : …
- Оператор цикла for
- Оператор цикла while – цикл с предусловием
- Оператор цикла do...While – цикл с постусловием
- Операторы прерывания continue, break, return, System.Exit
- Краткие итоги по главе 5
- Задания
- Глава 6. Начальные сведения об объектном программировании
- Наследование и полиморфизм. Uml-диаграммы
- Функции. Модификаторы. Передача примитивных типов в функции
- Локальные и глобальные переменные. Модификаторы доступа и правила видимости. Ссылка this
- Передача ссылочных типов в функции. Проблема изменения ссылки внутри подпрограммы
- Наследование. Суперклассы и подклассы. Переопределение методов
- Наследование и правила видимости. Зарезервированное слово super
- Статическое и динамическое связывание методов. Полиморфизм
- Базовый класс Object
- Конструкторы. Зарезервированные слова super и this. Блоки инициализации
- Удаление неиспользуемых объектов и метод finalize. Проблема деструкторов для сложно устроенных объектов
- Перегрузка методов
- Правила совместимости ссылочных типов как основа использования полиморфного кода. Приведение и проверка типов
- Рефакторинг
- Reverse engineering – построение uml-диаграмм по разработанным классам
- Краткие итоги по главе 6
- Задания
- Глава 7. Важнейшие объектные типы Массивы
- Коллекции, списки, итераторы
- Работа со строками в Java. Строки как объекты. Классы String, StringBuffer и StringBuilder
- Работа с графикой
- Исключительные ситуации Обработка исключительных ситуаций
- Иерархия исключительных ситуаций
- Объявление типа исключительной ситуации и оператор throw
- Объявление метода, который может возбуждать исключительную ситуацию. Зарезервированное слово throws
- Работа с файлами и папками
- Краткие итоги по главе 7
- Задания
- Глава 8. Наследование: проблемы и альтернативы. Интерфейсы. Композиция Проблемы множественного наследования классов. Интерфейсы
- Отличия интерфейсов от классов. Проблемы наследования интерфейсов
- Пример на использование интерфейсов
- Композиция как альтернатива множественному наследованию
- Краткие итоги по главе 8
- Задания
- Глава 9. Дополнительные элементы объектного программирования на языке Java Потоки выполнения (threads) и синхронизация
- Преимущества и проблемы при работе с потоками выполнения
- Синхронизация по ресурсам и событиям
- Класс Thread и интерфейс Runnable. Создание и запуск потока выполнения
- Поля и методы, заданные в классе Thread
- Подключение внешних библиотек dll.“Родные” (native) методы*
- Краткие итоги по главе 9
- Задания
- Глава 10. Введение в сетевое программирование Краткая справка по языку html
- Апплеты
- Сервлеты
- Технология jsp – Java Server Pages
- Краткие итоги по главе 10
- Задания
- Глава 11. Встроенные классы Виды встроенных классов
- Вложенные (nested) классы и интерфейсы
- Внутренние (inner) классы
- Локальные (local) классы
- Анонимные (anonimous) классы и обработчики событий
- Анонимные (anonimous) классы и слушатели событий (listeners)
- Краткие итоги по главе 11
- Задания
- Глава 12. Компонентное программирование Компонентная архитектура JavaBeans
- Мастер создания компонента в NetBeans
- Пример создания компонента в NetBeans – панель с заголовком
- Добавление в компонент новых свойств
- Добавление в компонент новых событий
- Краткие итоги по главе 12
- Задания
- Литература
- Дополнительная литература
- 276 Курс подготовлен при поддержке Sun Microsystems