Статическое и динамическое связывание методов. Полиморфизм
Данный параграф, несмотря на краткость, является очень важным – практически всё профессиональное программирование в Java основано на использовании полиморфизма. В то же время эта тема является одной из наиболее сложной для понимания учащимися. Поэтому рекомендуется внимательно перечитать этот параграф несколько раз.
Методы классов помечаются модификатором static не случайно – для них при компиляции программного кода действует статическое связывание. Это значит, что в контексте какого класса указано имя метода в исходном коде, на метод того класса в скомпилированном коде и ставится ссылка. То есть осуществляется связывание имени метода в месте вызова с исполняемым кодом этого метода. Иногда статическое связывание называют ранним связыванием, так как оно происходит на этапе компиляции программы. Статическое связывание в Java используется ещё в одном случае – когда класс объявлен с модификатором final (“финальный”, “окончательный”),
Методы объектов в Java являются динамическими, то есть для них действует динамическое связывание. Оно происходит на этапе выполнения программы непосредственно во время вызова метода, причём на этапе написания данного метода заранее неизвестно, из какого класса будет проведён вызов. Это определяется типом объекта, для которого работает данный код - какому классу принадлежит объект, из того класса вызывается метод. Такое связывание происходит гораздо позже того, как был скомпилирован код метода. Поэтому такой тип связывания часто называют поздним связыванием.
Программный код, основанный на вызове динамических методов, обладает свойством полиморфизма – один и тот же код работает по-разному в зависимости от того, объект какого типа его вызывает, но делает одни и те же вещи на уровне абстракции, относящейся к исходному коду метода.
Для пояснения этих не очень понятных при первом чтении слов рассмотрим пример из предыдущего параграфа – работу метода moveTo. Неопытным программистам кажется, что этот метод следует переопределять в каждом классе-наследнике. Это действительно можно сделать, и всё будет правильно работать. Но такой код будет крайне избыточным – ведь реализация метода будет во всех классах-наследниках Figure совершенно одинаковой:
public void moveTo(int x, int y){
hide();
x=this.x;
y=this.y;
show();
};
Кроме того, в этом случае не используются преимущества полиморфизма. Поэтому мы не будем так делать.
Ещё часто вызывает недоумение, зачем в абстрактном классе Figure писать реализацию данного метода. Ведь используемые в нём вызовы методов hide и show, на первый взгляд, должны быть вызовами абстрактных методов – то есть, кажется, вообще не могут работать!
Но методы hide и show являются динамическими, а это, как мы уже знаем, означает, что связывание имени метода и его исполняемого кода производится на этапе выполнения программы. Поэтому то, что данные методы указаны в контексте класса Figure, вовсе не означает, что они будут вызываться из класса Figure! Более того, можно гарантировать, что методы hide и show никогда не будут вызываться из этого класса. Пусть у нас имеются переменные dot1 типа Dot и circle1 типа Circle, и им назначены ссылки на объекты соответствующих типов. Рассмотрим, как поведут себя вызовы dot1.moveTo(x1,y1) и circle1.moveTo(x2,y2).
При вызове dot1.moveTo(x1,y1) происходит вызов из класса Figure метода moveTo. Действительно, этот метод в классе Dot не переопределён, а значит, он наследуется из Figure. В методе moveTo первый оператор – вызов динамического метода hide. Реализация этого метода берётся из того класса, экземпляром которого является объект dot1, вызывающий данный метод. То есть из класса Dot. Таким образом, скрывается точка. Затем идет изменение координат объекта, после чего вызывается динамический метод show. Реализация этого метода берётся из того класса, экземпляром которого является объект dot1, вызывающий данный метод. То есть из класса Dot. Таким образом, на новом месте показывается точка.
Для вызова circle1.moveTo(x2,y2) всё абсолютно аналогично – динамические методы hide и show вызываются из того класса, экземпляром которого является объект circle1, то есть из класса Circle. Таким образом, скрывается на старом месте и показывается на новом именно окружность.
То есть если объект является точкой, перемещается точка. А если объект является окружностью - перемещается окружность. Более того, если когда-нибудь кто-нибудь напишет, например, класс Ellipse, являющийся наследником Circle, и создаст объект Ellipse ellipse=new Ellipse(…), то вызов ellipse.moveTo(…) приведёт к перемещению на новое место эллипса. И происходить это будет в соответствии с тем, каким образом в классе Ellipse реализуют методы hide и show. Заметим, что работать будет давным-давно скомпилированный полиморфный код класса Figure . Полиморфизм обеспечивается тем, что ссылки на эти методы в код метода moveTo в момент компиляции не ставятся – они настраиваются на методы с такими именами из класса вызывающего объекта непосредственно в момент вызова метода moveTo.
В объектно-ориентированных языках программирования различают две разновидности динамических методов – собственно динамические и виртуальные. По принципу работы они совершенно аналогичны и отличаются только особенностями реализации. Вызов виртуальных методов быстрее. Вызов динамических медленнее, но служебная таблица динамических методов (DMT – Dynamic Methods Table) занимает чуть меньше памяти, чем таблица виртуальных методов (VMT – Virtual Methods Table).
Может показаться, что вызовы динамических методов неэффективен с точки зрения затрат по времени из-за длительности поиска имён. На самом деле во время вызова поиска имён не делается, а используется гораздо более быстрый механизм, использующий упомянутую таблицу виртуальных (динамических) методов. Но мы на особенностях реализации этих таблиц останавливаться не будем, так как в Java нет различения этих видов методов.
- Содержание
- Глава 1. Общие представления о языке Java 6
- Глава 2. Объектно-ориентированное проектирование и платформа NetBeans 26
- Глава 3. Примитивные типы данных и операторы для работы с ними 78
- Глава 4. Работа с числами в языке Java 95
- Глава 5. Управляющие конструкции 112
- Глава 6. Начальные сведения об объектном программировании 128
- Глава 7. Важнейшие объектные типы 175
- Введение
- Глава 1. Общие представления о языке Java
- 1.1. Java и другие языки программирования. Системное и прикладное программирование
- 1.2. Виртуальная Java-машина, байт-код, jit-компиляция. Категории программ, написанных на языке Java
- 1.3.Алфавит языка Java. Десятичные и шестнадцатеричные цифры и целые числа. Зарезервированные слова Алфавит языка Java
- Десятичные и шестнадцатеричные цифры и целые числа
- Зарезервированные слова языка Java
- 1.4. Управляющие последовательности. Символы Unicode. Специальные символы Управляющие последовательности
- Простые специальные символы
- Составные специальные символы
- 1.5.Идентификаторы. Переменные и типы. Примитивные и ссылочные типы
- Краткие итоги по главе 1
- Задания
- Глава 2. Объектно-ориентированное проектирование и платформа NetBeans
- 2.1.Процедурное и объектно-ориентированное программирование. Инкапсуляция
- 2.2. Работа со ссылочными переменными. Сборка мусора
- 2.3. Проекты NetBeans. Пакеты. Уровни видимости классов. Импорт классов
- 2.4. Базовые пакеты и классы Java
- 2.5. Создание в NetBeans простейшего приложения Java
- 2.6. Компиляция файлов проекта и запуск приложения
- 2.7. Структура проекта NetBeans
- 2.8. Создание в NetBeans приложения Java с графическим интерфейсом
- 2.9. Редактор экранных форм
- 2.10. Внешний вид приложения
- 2.11. Ведение проектов
- 2.11. Редактирование меню экранной формы
- 2.12. Создание нового класса
- 2.13. Документирование исходного кода в Java
- 2.14. Основные компоненты пакетов swing и awt
- 2.15. Технологии Java и .Net
- Краткие итоги по главе 2
- Задания
- Глава 3. Примитивные типы данных и операторы для работы с ними
- 3.1.Булевский (логический) тип
- 3.2.Целые типы, переменные, константы
- 3.3.Основные операторы для работы с целочисленными величинами
- 3.4.Вещественные типы и класс Math
- 3.5.Правила явного и автоматического преобразования типа при работе с числовыми величинами
- 3.6. Оболочечные классы. Упаковка (boxing) и распаковка (unboxing)
- 3.7.Приоритет операторов
- 3.8.Типы-перечисления (enum)
- Краткие итоги по главе 3
- Задания
- Глава 4. Работа с числами в языке Java
- 4.1 Двоичное представление целых чисел Позиционные и непозиционные системы счисления
- Двоичное представление положительных целых чисел
- Двоичное представление отрицательных целых чисел. Дополнительный код
- Проблемы целочисленной машинной арифметики
- Шестнадцатеричное представление целых чисел и перевод из одной системы счисления в другую
- 4.2. Побитовые маски и сдвиги
- 4.3. Двоичное представление вещественных чисел Двоичные дроби
- Мантисса и порядок числа
- Стандарт ieee 754 представления чисел в формате с плавающей точкой*
- Краткие итоги по главе 4
- Задания
- Глава 5. Управляющие конструкции Составной оператор
- Условный оператор if
- Оператор выбора switch
- Условное выражение …?... : …
- Оператор цикла for
- Оператор цикла while – цикл с предусловием
- Оператор цикла do...While – цикл с постусловием
- Операторы прерывания continue, break, return, System.Exit
- Краткие итоги по главе 5
- Задания
- Глава 6. Начальные сведения об объектном программировании
- Наследование и полиморфизм. Uml-диаграммы
- Функции. Модификаторы. Передача примитивных типов в функции
- Локальные и глобальные переменные. Модификаторы доступа и правила видимости. Ссылка this
- Передача ссылочных типов в функции. Проблема изменения ссылки внутри подпрограммы
- Наследование. Суперклассы и подклассы. Переопределение методов
- Наследование и правила видимости. Зарезервированное слово super
- Статическое и динамическое связывание методов. Полиморфизм
- Базовый класс Object
- Конструкторы. Зарезервированные слова super и this. Блоки инициализации
- Удаление неиспользуемых объектов и метод finalize. Проблема деструкторов для сложно устроенных объектов
- Перегрузка методов
- Правила совместимости ссылочных типов как основа использования полиморфного кода. Приведение и проверка типов
- Рефакторинг
- Reverse engineering – построение uml-диаграмм по разработанным классам
- Краткие итоги по главе 6
- Задания
- Глава 7. Важнейшие объектные типы Массивы
- Коллекции, списки, итераторы
- Работа со строками в Java. Строки как объекты. Классы String, StringBuffer и StringBuilder
- Работа с графикой
- Исключительные ситуации Обработка исключительных ситуаций
- Иерархия исключительных ситуаций
- Объявление типа исключительной ситуации и оператор throw
- Объявление метода, который может возбуждать исключительную ситуацию. Зарезервированное слово throws
- Работа с файлами и папками
- Краткие итоги по главе 7
- Задания
- Глава 8. Наследование: проблемы и альтернативы. Интерфейсы. Композиция Проблемы множественного наследования классов. Интерфейсы
- Отличия интерфейсов от классов. Проблемы наследования интерфейсов
- Пример на использование интерфейсов
- Композиция как альтернатива множественному наследованию
- Краткие итоги по главе 8
- Задания
- Глава 9. Дополнительные элементы объектного программирования на языке Java Потоки выполнения (threads) и синхронизация
- Преимущества и проблемы при работе с потоками выполнения
- Синхронизация по ресурсам и событиям
- Класс Thread и интерфейс Runnable. Создание и запуск потока выполнения
- Поля и методы, заданные в классе Thread
- Подключение внешних библиотек dll.“Родные” (native) методы*
- Краткие итоги по главе 9
- Задания
- Глава 10. Введение в сетевое программирование Краткая справка по языку html
- Апплеты
- Сервлеты
- Технология jsp – Java Server Pages
- Краткие итоги по главе 10
- Задания
- Глава 11. Встроенные классы Виды встроенных классов
- Вложенные (nested) классы и интерфейсы
- Внутренние (inner) классы
- Локальные (local) классы
- Анонимные (anonimous) классы и обработчики событий
- Анонимные (anonimous) классы и слушатели событий (listeners)
- Краткие итоги по главе 11
- Задания
- Глава 12. Компонентное программирование Компонентная архитектура JavaBeans
- Мастер создания компонента в NetBeans
- Пример создания компонента в NetBeans – панель с заголовком
- Добавление в компонент новых свойств
- Добавление в компонент новых событий
- Краткие итоги по главе 12
- Задания
- Литература
- Дополнительная литература
- 276 Курс подготовлен при поддержке Sun Microsystems