73. Особенности конструкций персональных эвм.
Основу конструкций любых ПЭВМ составляют печатные узлы с ИМС, ЭРЭ и другими элементами. В зависимости от количества используемых печатных узлов различают одноплатные и многоплатные конструкции. Одноплатные конструкции обычно содержат функционально всю схему компьютера. По такому варианту конструктивно реализуются, например, портативные и другие простейшие ПЭВМ.
В отличие от одноплатных, конструкции многоплатных ПЭВМ компонуются из нескольких печатных узлов, где центральная плата содержит схему минимальной конфигурации, остальные же функции системы реализуются на дополнительных платах. По такой схеме компонуются, например, профессиональные ПЭВМ.
Рассмотрим особенности конструкций настольных профессиональных ПЭВМ.
Обычно центральные и периферийные устройства профессиональных ПЭВМ, образующие конкретную вычислительную систему (системный блок, клавиатура, видеомонитор, печатающее устройство и др.), выполняются в виде самостоятельных независимых конструктивов — модулей, которые можно удобно располагать на рабочем месте пользователя и соединять друг с другом электрическими кабелями.
Как правило, все функциональные устройства системного блока (процессор, память, устройства ввода-вывода и др.) реализуют в виде конструктивно законченных сборочных единиц (узлов) — электронных модулей (ячеек), связь между которыми осуществляется по системной шине или с помощью кабелей.
Основу конструкции системного блока ПЭВМ составляет набор электронных модулей, механически и электрически соединенных между собой. Наиболее типичной является компоновка системного блока, когда он объединяет как электронные модули (процессора, оперативной памяти, адаптеров обязательных периферийных устройств), так и системы электропитания и охлаждения, громкоговоритель, а также разъемные соединители для подключения периферийных устройств. В большинстве современных ПЭВМ в системный блок встраиваются накопители на гибких и жестких магнитных или оптических дисках (дисководы), имеется также возможность установки некоторого количества дополнительных электронных модулей для расширения системы (например, дополнительной оперативной памяти, модулей профессиональной ориентации, коммуникационных адаптеров) или подключения специального блока расширения.
Электронные модули ПЭВМ конструктивно представляют собой монтажные печатные платы определенного типоразмера, обычно многослойные, на которых размещаются ИМС различной степени интеграции, в том числе микропроцессорные БИС и БИС системной поддержки, другие ЭРЭ, а также разъемные соединители. Эти элементы, размещаемые на плате, представляют собой электронное оборудование одной или нескольких функционально законченных частей ПЭВМ, например центрального процессора, оперативной памяти, адаптеров периферийных устройств и т. д.
Интегральные микросхемы высокой степени интеграции с большим числом выводов устанавливаются на печатные платы, как правило, с помощью специальных соединительных розеток, позволяющих обеспечить легкий съем корпусов БИС. В конструкции модуля обычно предусматривают также вспомогательные конструктивные элементы, например элементы крепления и фиксации: ручки, планки, съемники или рычаги для закрепления и вынимания модулей.
Интерфейс электронных модулей, их внешняя электрическая коммутация в систему осуществляется с помощью разъемных соединителей. Как правило, используются разъемные соединители прямого сочленения, но могут применяться также и разъемы косвенного сочленения.
По архитектурно-конструктивному исполнению различают «закрытые» и «открытые» ПЭВМ. «Закрытая» ПЭВМ представляет, собой вычислительную систему, функции которой жестко установлены с помощью аппаратных средств при сборке на заводе-изготовителе. Пользователь такой ПЭВМ практически не может заменить модули на более совершенные или добавить в вычислительную систему дополнительные модули, например, расширить оперативную памяти или подключить адаптеры новых периферийных устройств. По «закрытому» принципу реализуются в основном портативные и наиболее простые (игровые, домашние) ПЭВМ.
Современные модели ПЭВМ обычно реализуются в виде открытой, модульной (развиваемой в функциональном отношении), системы. Поэтому «открытые» ПЭВМ получили наибольшее распространение. Дополнительные функции в вычислительной системе (расширение системы) реализуются подключением к системной шине добавочных электронных модулей. В этом случае пользователь может приобретать и устанавливать в своей ПЭВМ различные дополнительные сменные модули, выполненные обычно в виде съемных плат, позволяющие расширять возможности ПЭВМ за счет применения новых периферийных устройств, подключения ПЭВМ к другим ЭВМ или сетям. Такие ПЭВМ легко модернизируются, морально устаревшие электронные модули заменяются новыми, выполненными по более совершенной технологии.
Для механического и электрического соединения электронных модулей в системном блоке обычно используется объединительная коммутационная плата (панель), часто называемая «материнской». Именно этот сборочный узел содержит ответные части разъемных соединителей электронных модулей, образующих системную шину. Каждый «дочерний» модуль вставляется в разъемный соединитель объединительной платы и обеспечивает выполнение одной или большего числа специфичных электронных функций, необходимых для функционирования всей ПЭВМ. От способа соединения модулей, используемых типов и количества разъемных соединителей зависят стоимость ПЭВМ, ее эффективность, гибкость и ремонтопригодность.
Для защиты от внешних воздействий и электромагнитных помех основные компоненты системного блока помещают в корпус. Корпуса системных блоков, как правило, содержат минимальное количество деталей, доступны для сборки и разборки простейшими инструментами и приспособлениями. Базовой несущей конструкцией обычно является металлическое основание (поддон), на котором размещаются блок электронных модулей, блок питания, кронштейны для закрепления дисководов, громкоговорителя и некоторые другие конструктивные элементы. В состав корпуса, кроме основания, входят также металлический кожух, передняя (лицевая) и задняя панели (стенки).
Рис 3. Вариант компоновки системного блока ПЭВМ:
1 — блок питания; 2— места установки (отсеки) накопителей);
3 — НГМД; 4 — НЖМД; 5 — системная плата; 6 — кожух.
На рис. 4, а, б показана конструкция системного блока, в которой использован корпус, состоящий из рамы, основания (поддона) и кожуха с декоративной лицевой панелью. Все электронное оборудование устанавливается на поворотной раме корпуса, соединенной шарнирно с основанием. Такая конструкция обеспечивает легкий и свободный доступ к основным частям системного блока, что повышает его ремонтопригодность. Для снижения трудоемкости сборки установка сборочных единиц осуществляется преимущественно без специального инструмента в определенные отверстия — ловители с самофиксацией.
В последние годы при конструктивной реализации системных блоков ПЭВМ часто используется принцип установки корпуса на ребро (типа «башня»), широко применяемый ранее в конструкциях мини-ЭВМ (рис. 5). Системная плата в этом случае размещается вертикально. Такой корпус позволяет размещать большее число дисководов (до 8 и более) и экономить место при размещении ПЭВМ на рабочем столе. Электрические соединения системного блока и периферийных устройств ПЭВМ осуществляются гибкими ленточными или специальными экранированными кабелями, которые заземляются на металлическом основании системного блока. Кабели от периферийных устройств сходятся в системный блок, где подключаются непосредственно к электронным модулям (адаптерам) через разъемные соединители косвенного сочленения. Широко используются также разъемы, в которых соединение с ленточными кабелями осуществляется прорезанием изоляции кабеля хвостовиками выводов и их контактированием с жилами кабелей.
Возможность реализации главной аппаратной части таких ЭВМ на одной объединительной (генмонтажной) плате;
Необходимость использования элементов различных размеров (корпуса БИС, процессорной части, СИС, электронного обрамления, резисторные и конденсаторные сборки в корпусах ИС);
Необходимость введения конструктивных элементов, обеспечивающих расширение возможностей аппаратуры.
1 – соединитель; 2,3,5 – керамические кристаллоносители; 4 – корпус генератора; 6 – печатная плата.
На рис показан одноплатный процессор, реализованный на ПП (6), которая имеет 96 контактных соединений (1). Процессорный модуль осуществляет конвейерную и параллельную обработку данных и построен на 3-х БИС.
Плата микро ЭВМ показана
1 – соединитель для дополнительных плат; 2 – объединительная плата; 3 – ИС; 4 – внешний соединитель.
На плате (2) установлены ИС (3) главной аппаратной части и соединители (1) для дополнительных плат, обеспечивающих расширение возможностей микро ЭВМ.
1 – генмонтажная плата; 2,3 – направляющие и скоба – фиксатор для дополнительных субблоков; 4 – дополнительные субблоки; 5 – каркас для винчестеров; 6 – блок питания; 7 – каркас для НГМД.
1 – МС; 2 – разъемы для интерфейсных и дополнительных субблоков; 3 – панели для МС; 4 – микропроцессор.
Шасси ПЭВМ и его генмонтажная плата показаны на рис 3 и рис 4. Монтаж МС невысокой и средней степени интеграции и микропроцессоров – неразъемный, а для БИС ЗУ и процессорной части используют панельки (3) рис 4.
- Полупроводниковые приборы. Классификация. Область применения.
- Полупроводниковые диоды. Классификация. Область применения.
- Полупроводниковые транзисторы. Классификация. Область применения.
- Полупроводниковые резисторы. Классификация. Область применения.
- Фотоэлектрические приборы. Классификация. Область применения.
- Аналоговые усилители. Классификация. Основные характеристики и параметры.
- Избирательные усилители. Усилители постоянного тока. Усилители мощности. Область применения.
- Стабилизаторы напряжения. Классификация. Параметры. Область применения.
- Логические операции. Схемная реализация.
- Цифровые устройства. Классификация. Комбинационные цу. Дешифраторы. Шифраторы, мультиплексоры, демультиплексоры.
- Комбинационные сумматоры.
- Триггера. Классификация. Область применения.
- Регистры и счетчики. Классификация. Схемы. Область применения.
- Цифро-аналоговые преобразователи. Назначение. Принцип работы. Матрица r-2r. Область применения.
- Аналого-цифровые преобразователи. Классификация. Область применения. Параллельные ацп. Ацп поразрядного взвешивания.
- Интегрирующие ацп. Ацп двойного интегрирования
- Таймеры. Классификация. Область применения.
- Источники вторичного напряжения. Структурные схемы. Выпрямители и фильтры.
- Транзисторный усилительный каскад с общим эммитером
- Дискретные цифровые сар: математическое описание, z передаточные функции.
- Анализ дискретных сар
- 23. Логарифмические частотные характеристики сар.
- 24. Переходные функции и переходные характеристики сар. Реакция сар на произвольный входной сигнал
- 25.Типовые звенья сар и их частотные и временные характеристики Апериодическое звено
- Интегрирующее звено
- 26. Устойчивость линейных сар: определение, теоремы Ляпунова, алгебраический критерий устойчивости Гурвица.
- 27. Частотные критерии устойчивости линейных сар
- 28. Анализ качества линейных сар.
- 29. Синтез корректирующих устройств линейных сар.
- 30. Анализ нелинейных сар.
- 31. Показатели качества эс
- 33. Себестоимость и уровень качества эс
- 34. Корреляционная связь показателей эc Диаграмма разброса (поле корреляции)
- 35. Метод расслаивания чм.
- 36. Метод «авс-анализ»
- Складские запасы изделий
- 37. Виды статистического контроля эс
- 38. Количественные показатели надежности эс
- 39. Последовательная модель надежности
- 40. Параллельная модель надежности эс
- 41. Основные этапы автоматизации: их характеристики и особенности.
- 42. Назначение, классификация и области применения роботов
- 43. Манипуляционные роботы: типы, характеристики, применение
- 44. Структура механизмов манипуляц-х роботов и характеристики их геом. Свойств
- 45. Приводы манипуляторов и роботов: классификация, особенности применения
- 46. Конструкции схватов промышленных роботов(пр), особенности применения
- 47. Проектирование архитектуры интегрированной компьютерной системы управления (иксу)
- 48. Описание технологического процесса как объекта автоматизированного управления
- 49. Описание производственного процесса как объекта автоматизированного управления: реализации арм различных уровней
- 50. Выбор датчиков тп:типы измерительных устройств, подключение
- 51. Теорема Котельникова (теорема отсчетов). Квазидетерминированные сигналы.
- 52. Преобразование измерительных сигналов. Виды модуляций
- 53. Цифровые частотомеры
- 54. Цифровые фазометры
- 55. Цифровые вольтметры (цв) временного преобразования
- 56. Микропроцессорные цифровые измерительные приборы.
- 57. Резистивные датчики (реостатные, тензорезисторы)
- 58. Электромагнитные датчики (индуктивные, трансформаторные, магнитоупруние).
- 59. Пьезоэлектрические датчики
- 60. Тепловые датчики (термопары, термометры сопротивления).
- 61. Организация и этапы разработки конструкторских документов.
- 62. Виды кд.
- 63. Стандартизация и бнк.
- 64. Виды и типы схем, обозначения по ескд.
- 65. Методы компоновки конструкции эвс.
- 66. Климатические зоны и категории исполнения.
- 67. Способы защиты эвс от влаги.
- Примеры конструкций средств защиты
- 68. Защита эвс от механических воздействий.
- Рекомендации по защите рэа от вибрационных воздействий
- 69. Способы обеспечения теплового режима эвс.
- 70. Электромагнитные воздействия. Виды экранов.
- Экран из ферромагнитного материала с большой магнитной проницаемостью (метод шунтирования экраном).
- 71. Виды линий связи.
- 72. Особенности конструирования бортовых эвс.
- 73. Особенности конструкций персональных эвм.
- 74. Унификация. Разновидности стандартизации.
- Разновидности стандартизации
- 75. Требования к трассировке пп
- 76. Электромонтажные провода. Припои и флюсы.
- 77. Волоконно-оптические линии связи (волс). Примеры использования.
- 78. Эргономические требования к пультам и органам управления и сигнализации
- 79. Эргономика конструирования лицевой панели прибора.
- 80. Защита эс от воздействия радиации.
- 81. Производственный и технологический процесс и их составляющие
- 82. Исходные данные для разработки технологических процессов. Основные этапы разработки единичного технологического процесса.
- 83. Требования к оформлению технологической документации. Примеры записи технологических операций.
- 84. Основные методы изготовления печатных плат и их особенности
- 85. Конструктивно-технологические разновидности радиоэлектронных узлов и их сопоставительный анализ.
- 86. Основные технологические операции при изготовлении радиоэлектронных узлов с монтажом на поверхность
- 87. Нанесение паяльной пасты и клея и используемое при этом оборудование
- 88. Принципы организации работы сборочных автоматов
- 89. Особенности выполнения пайки при изготовлении электронных модулей ( пайка оплавлением, волной припоя, селективная пайка).
- 90. Особенности выполнения ремонтных работ: демонтаж и монтаж компонентов.
- 91. Материалы, используемые в технологии монтажа на поверхность.
- 92 Виды соединительных операций при сборке.
- 94. Соединение пайкой: разновидности, области применения, примеры выполнения паяных соединений.
- 95. Разработка схемы сборки изделий.
- 96. Нормирование затрат времени при проектировании технологических процессов (штучное и подготовительно-заключительное время, определение такта и ритма выпуска изделий).
- 97. Изготовление деталей эс методом литья
- 98. Разделительные и формообразующие операции холодной штамповки
- 99. Общая характеристика методов формообразования материалов и деталей при производстве эс
- 100. Изготовление электронных модулей по технологии внутреннего монтажа.
- 101. Приведите структуру контроллера (микроЭвм) с раздельными шинами адрес/данные и следующим составом:
- 102. Укажите место на структурной схеме эвм различных интерфейсов. Как объединять эвм в систему? Какие условия следует выполнить при передаче данных? Обоснуйте.
- 103.Расставьте по убыванию значимости параметры эвм по критерию производительности. Охарактеризуйте эти параметры.
- 105. Сопоставьте принципы печати лазерного и струйного принтеров, опишите и сравните их.
- 107. Выберите способ обмена данными между процессором и внешним устройством. Обоснуйте выбор. Напишите процедуру ввода или вывода данных в память эвм в мнемонике команд (уровень ассемблера).
- 108. Приведите основные архитектурные варианта построения операционных систем. Поясните понятие «виртуальная машина»
- 110. Спроектировать устройство микропрограммного управления автономного типа. Источник управляющих кодов – счетчик микрокоманд, число состояний счетчика – 32. Разрядность регистра микрокоманд – 24
- 112. Прерывания как способ изменения адреса в управляющей команде. Привести пример системы прерывания. Описать процедуру опознавания запроса на прерывание с маскированием
- С линией запроса
- 113. Системы памяти эвм. Назначение каждого типа элементов памяти и место его в иерархии. Что дает для характеристик эвм каждый тип элементов памяти
- 114. Память программ. Виды носителей. Жесткие диски и их твердотельные аналоги
- 115. Компиляторы. Назначение компиляторов, их виды. Последовательность процедуры компиляции
- 116. Контроль информации при последовательной передаче двоичного кода. Методы контроля. Контроль передачи информации при обмене словами (байтами). Методы.
- 117. Приведите основные структуры объединения процессоров в многопроцессорных системах. В чем суть ограничений архитектуры Фон-Неймана
- 118. Сравните структуры двух мпк, имеющих организацию smp и mpp. Приведите их структурные схемы
- 119. Сравните характеристики двух последовательных интерфейсов rs-232с и usb. Приведите структурную организацию интерфейсов и формат передаваемых данных
- 121. Основные понятия процесса проектирования систем управления. Цель процесса проектирования.
- 122. Системный подход к проектированию.
- 123. Структура процесса автоматизированного проектирования
- 124. Основные типы автоматизированных систем, разновидности сапр.
- Структура сапр
- 125. Стадии проектирования автоматизированных систем и аспекты их описания.
- 126. Особенности проектирования автоматизированных систем.
- 127. Понятие о cals-технологиях.
- 128. Открытые системы.
- 129. Техническое обеспечение систем автоматизированного проектирования
- 130. Типы сетей, методы доступа в сетях, протоколы и стеки протоколов в вычислительных сетях
- Стеки протоколов и типы сетей в ас
- 131. Сапр систем управления
- 132. Автоматизация управления предприятием, логистические системы.
- 133. Асутп, автоматизированные системы делопроизводства.
- Автоматизированные системы делопроизводства
- 134. Математическое обеспечение анализа проектных решений.
- 135. Компоненты математического обеспечения, структура вычислительного процесса анализа.
- 136. Математические модели в процедурах анализа на макроуровне
- 137. Математическое обеспечение анализа на микроуровне
- 138. Математическое обеспечение анализа на функционально-логическом уровне
- 139. Математическое обеспечение на системном уровне
- 140. Математическое обеспечение подсистем машинной графики и геометрического моделирования.
- 141. Схемы мультивибратора на транзисторах и оу.
- 142. Схема одновибратора на транзисторах.
- 144. Повторитель на оу
- 145. Двухтактный трансформаторный усилитель мощности, работающий в режиме ав.
- 150. Генератор гармонических колебаний на транзисторах.
- 151. Архитектурные принципы Фон-Неймана. Ограничения.
- 152. Основные понятия информационно-вычислительных систем, классификация по критерию потоков информации
- 153. Совмещение операций и многопрограммная работа. Режим работы в реальном времени
- 154.Типы структур многопроцессорных вс. Параллельные эвм, классификация. Три архитектурных класса машин
- Классификация по программной организации
- Классификация по архитектуре
- 155. Принципы ввода-вывода информации в пэвм. Роль и структура контроллера ввода информации
- Принцип ввода-вывода информации в пэвм. Роль и структура контроллера ввода информации
- 156. Программная реализация ввода чисел с клавиатуры. Привести алгоритм ввода двухразрядного числа с клавиатуры для его суммирования с другими числами
- 157. Вывод и.На дисплей.Принципы отображения информации на экране дисплея. Lcd-дисплеи
- 158. Процедура вывода символьной информации на дискретные индикаторы.
- 159. Загрузчики. Процедура загрузки. Статистические и динамические загрузки.
- 160. Управление реальной памятью. Виртуальная память. Таблица соответствия адресов