1.6 Векторы и матрицы
Вектор – это упорядоченный перечень чисел. Вектор можно ввести с клавиатуры, набрав в командной строке перечень чисел, отделенных запятыми или пробелами, помещенный в квадратные скобки. Например:
V=[1 2 3]
V =
1 2 3
>> Z=[-2,0 1,4]
Z =
-2 0 1 4
Символ <:> (двоеточие) дает возможность простого создания векторов, каждый элемент которых отличается от предшествующего на постоянную величину (шаг или приращение). Шаг может быть и отрицательным. Например:
>> V=-0.1:0.3:1.4
V =
-0.1000 0.2000 0.5000 0.8000 1.1000 1.4000
Шаг, равный единице, можно не указывать:
>> X=-2:2
X =
-2 -1 0 1 2
Элементы вектора X можно выделить в виде X(1), X(2) и т. д. Например:
>> X(4)
ans =
1
Чтобы изменить форму вектора X со строчной на столбцовую, введем символ <′> (апостроф) после X:
>> X'
ans =
-2
-1
0
1
2
Вектор-столбец можно ввести с командной строки, но значения элементов в перечне должны отделятся знаком <;> (точка с запятой):
>> A=[1.3;5.4;6.9]
A =
1.3000
5.4000
6.9000
MATLAB способен эффективно выполнять операции с векторами. Например, чтобы возвести в куб элементы вектора X, введем следующую команду:
>> X.^3
ans =
-8 -1 0 1 8
Подробнее операции над векторами и матрицами будут рассмотрены ниже. Матрица – это прямоугольный набор чисел. Рассмотрим матрицу размером 2×3:
B=.
В MATLAB эту матрицу можно ввести с помощью следующей команды:
>> B=[1 3 0;-2 -2 5]
B =
1 3 0
-2 -2 5
Отметим, что элементы матрицы в строке отделяются друг от друга пробелами, а сами строки разделяются точкой с запятой. Элементы в строке можно также отделять друг от друга запятыми.
Элементы матрицы B можно выделить в виде B(1,1), B(2,3) и т. д. Например:
>> B(1,2)
ans =
3
Чтобы транспонировать матрицу B, введем символ <′> (апостроф) после B:
>> B'
ans =
1 -2
3 -2
0 5
Чтобы возвести в квадрат элементы матрицы B, достаточно ввести следующую команду:
>> B.^2
ans =
1 9 0
4 4 25
Векторы и матрицы – это массивы однородных данных, которые отличаются числом измерений. Под вектором в MATLAB понимается одномерный массив данных, а под матрицей – двумерный массив. Подробнее тема массивов будет рассмотрена ниже.
- Основы работы и программирования, компьютерная математика Учебный курс
- Isbn ооо «Харвест», 2008
- Предисловие
- Введение
- Глава 1 знакомство с matlab и простейшие вычисления
- 1.1. Рабочая средаMatlab
- 1.2. Арифметические вычисления
- 1.3. Вещественные числа
- 1.4. Форматы вывода результата вычислений
- 1.5 Комплексные числа
- 1.6 Векторы и матрицы
- 1.7 Встроенные функции. Функции, задаваемые пользователем
- 1.8 Сообщения об ошибках и их исправление
- 1.9 Просмотр и сохранение переменных
- 1.10 Матричные и поэлементные операции над векторами и матрицами
- 1.11 Решение систем линейных уравнений
- Вопросы для самопроверки
- Глава 2 работа с массивами
- 2.1 Создание векторов и матриц
- 2.2 Применение команд обработки данных к векторам и матрицам
- 2.3 Создание специальных матриц
- 2.4 Создание новых массивов на основе существующих
- 2.5 Вычисление собственных значений и собственных векторов. Решение типовых задач линейной алгебры
- Вопросы для самопроверки
- Глава 3 м-файлы
- 3.1 Файл-программы
- 3.2 Файл-функции
- Вопросы для самопроверки
- Глава 4 программирование
- 4.1 Операторы отношения и логические операторы
- 4.2 Операторы цикла
- 4.3 Операторы ветвления
- 4.4 Оператор переключения switch
- 4.5 Оператор прерывания цикла break
- 4.6 Пример сравнения быстродействия матричных и скалярных операций
- Вопросы для самопроверки
- Глава 5 высокоуровневая графика
- 5.1 2D графика
- 5.1.1 Графики в линейном масштабе
- 5.2 Специальные виды 2d - графиков
- 5.2.1 Представление функции в виде дискретных отсчетов
- 5.2.2 Лестничные графики
- 5.2.3 Графики с указанием погрешности
- 5.2.4 Графики в логарифмическом и полулогарифмическом масштабах
- 5.2.5 Графики параметрических функций
- 5.3 3D графика
- 5.3.1 Линейчатые поверхности
- 5.3.2 Каркасные поверхности
- 5.3.3 Контурные графики
- 5.3.4 Сплошная освещенная поверхность
- 5.4 Оформление, экспорт и анимация
- 5.4.1 Оформление графиков
- 5.4.2 Сохранение и экспорт графиков
- 5.4.3 Анимация
- Вопросы для самопроверки
- Глава 6 прикладная численная математика
- 6.1 Операции с полиномами
- 6.2 Решение уравнений и их систем
- 6.3 Минимизация функции одной переменной
- 6.4 Минимизация функции нескольких переменных
- 6.5 Вычисление определенных интегралов
- 6.6 Решение дифференциальных уравнений
- 6.7 Аппроксимация и интерполяция данных
- 6.8 Интерполяция двумерных и многомерных данных
- Вопросы для самопроверки
- Глава 7 символьные вычисления
- 7.1 Символьные переменные, константы и выражения
- 7.2 Вычисления с использованием арифметики произвольной точности
- 7.3 Команды упрощения выражений – simplify, simple
- 7.4 Команда расширения выражений – expand
- 7.5 Разложение выражений на простые множители – команда factor
- 7.6 Приведение подобных членов – команда collect
- 7.7 Обеспечение подстановок – команда subs
- 7.8 Вычисление пределов – команда limit
- 7.9 Вычисление производных – команда diff
- 7.10 Вычисление интегралов – команда int
- 7.11 Разложение в ряд Тейлора – команда taylor
- 7.12 Вычисление суммы ряда – команда symsum
- 7.13 Решение уравнений и их систем – команда solve
- 7.14 Решение дифференциальных уравнений – команда dsolve
- 7.15 Прямое и обратное преобразования Лапласа – команды laplace,ilaplace
- 7.16 Графики символьных функций – команды ezplot, ezpolar
- 7.17 Прямой доступ к ядру системы Maple – командаmaple
- 7.18 Разложение рациональной дроби на сумму простейших дробей
- 7.19 Интерполяционный полином Лагранжа
- 7.20 Решение неравенств и систем неравенств
- 7.21 Разложение в ряд Тейлора функции нескольких переменных
- 7.22 Решение дифференциальных уравнений с помощью степенных рядов
- 7.23 Решение тригонометрических уравнений
- Вопросы для самопроверки
- Приложения Приложение 1. Справочная система matlab
- Приложение 2. Знакомство с пакетами расширения системыMatlab
- Приложение 3. Задания для самостоятельной работы
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Литература