Машинное творчество.
В 1957 году американские исследователи М. Мэтьюз и Н. Гутман посетили концерт одного малоизвестного пианиста. Концерт им обоим не понравился, и, придя домой, М. Мэтьюз тут же стал писать программу, играющую музыку. Идея Мэтьюза, развиваясь, породила целый класс музыкальных языков программирования, которые вначале назывались MUSIC с номером версии. Язык C-Sound произошел как раз из этих программ. А отделение Стэндфордского института исследований, где работал тогда М. Мэтьюз, выросло в музыкальный исследовательский центр под названием CCRMA.
В 1959 году советский математик Рудольф Зарипов начал «сочинять» одноголосные музыкальные пьесы на машине «Урал» [16]. Они назывались «Уральские напевы» и носили характер эксперимента. При их сочинении использовались случайные процессы для различных элементов музыкальной фактуры (форма, ритм, звуковысотность и т. д.). С тех пор появилось очень много программ для алгоритмической композиции. Для различных музыкальных задач было создано специальное программное обеспечение: системы многоканального сведения; системы обработки звука; системы синтеза звука; системы интерактивной композиции; программы алгоритмической композиции и др.
В 1975-1976 годах были проведены эксперименты по сравнению машинной и «человеческой» музыки. Для эксперимента были выбраны мелодии песен известных советских композиторов, опубликованные в сборниках избранных песен, и мелодии, сочиненные на вычислительной машине «Урал-2» по программе Р. Зарипова. Результаты экспериментов таковы: машинные сочинения жюри признало в большинстве случаев наиболее интересными и, «без сомнения, написанными человеком». Таким образом, деятельность машины удовлетворяла критерию Тьюринга - слушатели-эксперты не узнали ее.
Д. А. Поспелов в своем интервью «Литературной газете» [№1, 1976] слегка иронизирует над методом Р. Зарипова, вспоминая, что примерно такой же способ «творчества» предложил еще Остап Бендер в «Золотом теленке», продав журналисту Ухудшанскому свое «Незаменимое пособие для сочинения юбилейных статей, табельных фельетонов, а также парадных стихотворений, од и тропарей», избавляющее от «необходимости ждать, покуда вас окатит потный вал вдохновенья». Из раздела первого (словарь) берутся нужные существительные, прилагательные, глаголы, смешиваются по образцам раздела второго (творческая часть) и получается «шедевр». Такой метод можно запрограммировать и можно написать повести, рассказы, стихи. Но вряд ли это можно назвать творчеством. Практически очевидно, что таким образом не будет создано гениальное в общечеловеческом смысле произведение.
Не будем требовать от интеллектуальных систем гениальности. ИС уже сейчас способны делать много полезной и разумной работы, которая требует какой-то доли интеллекта.
Среди направлений работ в области ИИ следует также выделить НЕЙРОКИБЕРНЕТИКУ, или иначе говоря, подход к разработке машин, демонстрирующих «разумное» поведение, на основе архитектур, напоминающих устройство мозга и называемых нейронными сетями (НС). В 1942 году, когда Н. Винер определил концепции кибернетики, В. Мак-Каллок и В. Питс опубликовали первый фундаментальный труд по НС, где говорилось о том, что любое хорошо заданное отношение вход-выход может быть представлено в виде формальной НС [17]. Одна из ключевых особенностей нейронных сетей состоит в том, что они способны обучаться на основе опыта, полученного в обучающей среде. В 1957 году Ф. Розенблат изобрел устройство для распознавания на основе НС - персептрон, который успешно различал буквы алфавита, хотя и отличался высокой чувствительностью к их написанию [18].
Читателю, возможно, интересно узнать, что у рядовых муравьев и пчел примерно 80 нейронов на особь (у царицы - 200-300 нейронов), у тараканов - 300 нейронов и эти существа показывают отличные адаптационные свойства в процессе эволюции. У человека число нейронов более 1010.
Пик интереса к НС приходится на 60-е и 70-е годы, но в последние десять лет наблюдается резко возросший объем исследований и разработок НС. Это стало возможным в связи с появлением нового аппаратного обеспечения, повысившего производительность вычислений в НС (нейропроцессоры, транспьютеры и т. п.). НС хорошо подходят для распознавания образов и решения задач классификации, оптимизации и прогнозирования. Поэтому основными областями применения НС являются:
промышленное производство и робототехника;
военная промышленность и аэронавтика;
банки и страховые компании;
службы безопасности;
биомедицинская промышленность;
телевидение и связь; и другие области.
Заканчивая исторический обзор работ в области ИИ, следует вернуться в 1981 год. В это время японские специалисты, объединившие свои усилия под эгидой научно-исследовательского центра по обработке информации JIPDEC, опубликовали программу НИОКР с целью создания к 1991 году прототипа ЭВМ нового поколения. Эта программа, получившая на Западе название «японский вызов», была представлена как попытка построить интеллектуальный компьютер, к которому можно было бы обращаться на естественном языке и вести беседу.
Серьезность, с которой основные конкуренты Японии откликнулись на брошенный им вызов, объясняется тем, что прежде переход от одного поколения к другому характеризовался изменением элементной базы, ростом производительности и расширением сервисных возможностей для пользователей, владеющих в той или иной мере профессиональными навыками программирования. Переход к ЭВМ пятого поколения означал резкий рост «интеллектуальных» способностей компьютера и возможность диалога между компьютером и непрофессиональным пользователем на естественном языке, в том числе в речевой форме или путем обмена графической информацией - с помощью чертежей, схем, графиков, рисунков. В состав ЭВМ пятого поколения также должна войти система решения задач и логического мышления, обеспечивающая способность машины к самообучению, ассоциативной обработке информации и получению логических выводов. Уровень «дружелюбия» ЭВМ по отношению к пользователю повысится настолько, что специалист из любой предметной области, не имеющий навыков работы с компьютером, сможет пользоваться ЭВМ при помощи естественных для человека средств общения - речи, рукописного текста, изображений и образов.
В литературе того времени [19] достаточно подробно описываются все эти вопросы. Здесь отметим только основные компоненты программного обеспечения (ПО), планируемые для систем пятого поколения:
базовая программная система, включающая систему управления базой знаний (СУБЗ), систему приобретения и представления знаний, систему решения задач и получения выводов, систему обучения и объяснения решений;
базовая прикладная система, включающая интеллектуальную систему автоматизированного проектирования (САПР) сверхбольших интегральных схем (СБИС) и архитектур ЭВМ, интеллектуальную систему программирования, систему машинного перевода и понимания ЕЯ, систему распознавания образов и обработки изображений (не менее 100 000 единиц информации в виде изображений), систему распознавания речи (не менее 10 000 слов), базы знаний (БЗ) о предметных областях, а также утилитные системы для ввода программ и данных, обеспечивающие диагностику и обслуживание.
Теперь с позиции нашего времени можно сказать, что фирма Microsoft постаралась частично ответить на «японский вызов» в своих версиях операционной системы Windows для персональных компьютеров серии IBM PC AT/486 и выше. Уровень «дружелюбия» ЭВМ пятого поколения по отношению к пользователю действительно значительно повысился по сравнению с другими поколениями ЭВМ. В эти же годы стремительное развитие Internet стало мощным шагом по пути создания распределенных баз знаний.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом