2.4. Семантические сети
Семантика в бытовом понимании означает смысл слова, художественного произведения, действия и т.д. Семантическая сеть (СС) - это граф, дуги которого есть отношения между вершинами (значениями). Семантические сети появились как модель СПЗ при решении задач разбора и понимания смысла естественного языка. Модели в виде СС активно развиваются в работах зарубежных и отечественных ученых, вбирая в себя важнейшие свойства других типов моделей [34], [35], [36], [37].
Пример семантической сети для предложения типа "Поставщик осуществил поставку изделий по заказу клиента до 1 июня 2004 года в количестве 1000 штук" приведен на рис. 2.3.
Рис. 2.3. Пример семантической сети
На этом примере видно, что между объектами Поставщик и Поставка определено отношение "агент", между объектами Изделие и Поставка определено отношение "объект" и т.д.
Число отношений, используемых в конкретных семантических сетях, может быть самое разное. К.Филмор, один из первых поборников идеи семантических падежей при разборе предложений, проводил свои рассуждения, пользуясь дюжиной отношений [34]. Неполный список возможных отношений, используемых в семантических сетях для разбора предложений, выглядит следующим образом [5].
Агент - это то, что (тот, кто) вызывает действие. Агент часто является подлежащим в предложении, например, "Робби ударил мяч".
Объект - это то, на что (на кого) направлено действие. В предложении объект часто выполняет роль прямого дополнения, например, "Робби взял желтую пирамиду ".
Инструмент - то средство, которое используется агентом для выполнения действия, например, "Робби открыл дверь с помощью ключа ".
Соагент служит как подчиненный партнер главному агенту, например, "Робби собрал кубики с помощью Суззи".
Пункт отправления и пункт назначения - это отправная и конечная позиции при перемещении агента или объекта: "Робби перешел из комнаты в библиотеку ".
Траектория - перемещение от пункта отправления к пункту назначения: "Они прошли через дверь по ступенькам на лестницу ".
Средство доставки - то в чем или на чем происходит перемещение: "Он всегда едет домой на метро ".
Местоположение - то место, где произошло (происходит, будет происходить) действие, например, "Он работал за столом ".
Потребитель - то лицо, для которого выполняется действие: "Робби собрал кубики для Суззи".
Сырье - это, как правило, материал, из которого что-то сделано или состоит. Обычно сырье вводится предлогом из, например, "Робби собрал Суззи из интегральных схем ".
Время - указывает на момент совершения действия: "Он закончил свою работу поздно вечером ".
Наиболее типичный способ вывода в семантических сетях (СС) - это способ сопоставления частей сетевой структуры. Это видно на следующем простом примере, представленном нарис. 2.4.
Рис. 2.4. Процедура сопоставления в СС
Куб Cube принадлежит миру BlockWorld.
Куб Cube_001 есть разновидность куба Cube.
Легко сделать вывод:
Куб Cube_001 есть часть мира BlockWorld.
Еще один пример поиска в СС. Представим вопрос "какой объект находится на желтом блоке?" в виде подсети, изображенной на рис. 2.5. Произведем сопоставление вопроса с сетью, представленной на рис. 2.6. В результате сопоставления получается ответ - "Пирамида".
Рис. 2.5. Вопрос в виде CC
Рис. 2.6. Процедура сопоставления в СС
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом