Доказательство теорем.
Изучение приемов доказательства теорем сыграло важную роль в развитии ИИ. Формализация дедуктивного процесса с использованием логики предикатов помогает глубже понять некоторые компоненты рассуждений. Многие неформальные задачи, например, медицинская диагностика, допускают формализацию как задачу на доказательство теорем. Поиск доказательства математической теоремы требует не только произвести дедукцию, исходя из гипотез, но также создать интуитивные догадки и гипотезы о том, какие промежуточные утверждения следует доказать для вывода доказательства основной теоремы.
В 1954 году А. Ньюэлл задумал создать программу для игры в шахматы. Дж. Шоу и Г. Саймон объединились в работе по проекту Ньюэлла и в 1956 году они создали язык программирования IPL-I (предшественник LISPа) для работы с символьной информацией. Их первыми программами стала программа LT (Logic Theorist) для доказательства теорем и исчисления высказываний (1956 год), а также программа NSS (Newell, Shaw, Simon) для игры в шахматы (1957 год). LT и NSS привели к созданию А. Ньюэллом, Дж. Шоу и Г. Саймоном программы GPS (General Problem Solver) в 1957-1972 годах Программа GPS моделировала используемые человеком общие стратегии решения задач и могла применяться для решения шахматных и логических задач, доказательства теорем, грамматического разбора предложений, математического интегрирования, головоломок типа «Ханойская башня» и т. д. Процесс работы GPS воспроизводит методы решения задач, применяемые человеком: выдвигаются подцели, приближающие к решению, применяется эвристический метод (один, другой и т. д.), пока не будет получено решение. Попытки прекращаются, если получить решение не удается. Программа GPS могла решать только относительно простые задачи. Ее универсальность достигалась за счет эффективности. Специализированные «решатели задач» - STUDENT (Bobrov, 1964) и др. лучше проявляли себя при поиске решения в своих предметных областях. GPS оказалась первой программой (написана на языке IPL-V), в которой предусматривалось планирование стратегии решения задач.
Для решения трудно формализуемых задач и, в частности, для работы со знаниями были созданы языки программирования для задач ИИ: LISP (1960 год, J. MacCatthy), Пролог (1975-79 годы, D. Warren, F. Pereira), ИнтерLISP, FRL, KRL, SMALLTALK, OPS5, PLANNER, QA4, MACSYMA, REDUCE, РЕФАЛ, CLIPS. К числу наиболее популярных традиционных языков программирования для создания ИС следует также отнести С++ и Паскаль.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом