Альфа-бета-процедура
Теоретически, это эквивалентная минимаксу процедура, с помощью которой всегда получается такой же результат, но заметно быстрее, так как целые части дерева исключаются без проведения анализа. В основе этой процедуры лежит идея Дж. Маккарти об использовании двух переменных, обозначенных и β (1961 год).
Основная идея метода состоит в сравнении наилучших оценок, полученных для полностью изученных ветвей, с наилучшими предполагаемыми оценками для оставшихся. Можно показать, что при определенных условиях некоторые вычисления являются лишними. Рассмотрим идею отсечения на примере рис. 3.6. Предположим, позиция А полностью проанализирована и найдено значение ее оценки . Допустим, что один ход из позиции Y приводит к позиции Z, оценка которой по методу минимакса равна z. Предположим, что z . После анализа узла Z, когда справедливо соотношение y z s, ветви дерева, выходящие из узла Y, могут быть отброшены (альфа-отсечение).
Рис. 3.6. - отсечение
Если мы захотим опуститься до узла Z, лежащего на уровне произвольной глубины, принадлежащей той же стороне, что и уровень S, то необходимо учитывать минимальное значение оценки β, получаемой на ходах противника.
Отсечение типа β можно выполнить всякий раз, когда оценка позиции, возникающая после хода противника, превышает значение β. Алгоритм поиска строится так, что оценки своих ходов и ходов противника сравниваются при анализе дерева с величинами и β соответственно. В начале вычислений этим величинам присваиваются значения +∞ и -∞, а затем, по мере продвижения к корню дерева, находится оценка начальной позиции и наилучший ход для одного из противников.
Правила вычисления и β в процессе поиска рекомендуются следующие:
у MAX вершины значение равно наибольшему в данный момент значению среди окончательных возвращенных значений для ее дочерних вершин;
у MIN вершины значение β равно наименьшему в данный момент значению среди окончательных возвращенных значений для ее дочерних вершин.
Правила прекращения поиска:
можно не проводить поиска на поддереве, растущем из всякой MIN вершины, у которой значение β не превышает значения всех ее родительских MAX вершин;
можно не проводить поиска на поддереве, растущем из всякой MAX вершины, у которой значение не меньше значения β всех ее родительских MIN вершин.
Нарис. 3.7 показаны -β отсечения для конкретного примера. Таким образом, -β-алгоритм дает тот же результат, что и метод минимакса, но выполняется быстрее.
Рис. 3.7. a-b отсечение для конкретного примера
Использование алгоритмов эвристического поиска для поиска на графе И, ИЛИ выигрышной стратегии в более сложных задачах и играх (шашки, шахматы) не реален. По некоторым оценкам игровое дерево игры в шашки содержит 1040 вершин, в шахматах 10120 вершин. Если при игре в шашки для одной вершины требуется 1/3 наносекунды, то всего игрового времени потребуется 1021 веков. В таких случаях вводятся искусственные условия остановки, основанные на таких факторах, как наибольшая допустимая глубина вершин в дереве поиска или ограничения на время и объем памяти.
Многие из рассмотренных выше идей были использованы А. Ньюэллом, Дж. Шоу и Г. Саймоном в их программе GPS. Процесс работы GPS в общем воспроизводит методы решения задач, применяемые человеком: выдвигаются подцели, приближающие к решению; применяется эвристический метод (один, другой и т. д.), пока не будет получено решение. Попытки прекращаются, если получить решение не удается.
Программа STRIPS (STanford Research Institut Problem Solver) вырабатывает соответствующий порядок действий робота в зависимости от поставленной цели. Программа способна обучаться на опыте решения предыдущих задач. Большая часть игровых программ также обучается в процессе работы. Например, знаменитая шашечная программа Самюэля, выигравшая в 1974 году у чемпиона мира, "заучивала наизусть" выигранные партии и обобщала их для извлечения пользы из прошлого опыта. Программа HACHER Зуссмана, управляющая поведением робота, обучалась также и на ошибках.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом