2.5. Нечеткая логика
При формализации знаний достаточно часто встречаются качественные знания, например, высокая температура при гриппе, слабое свечение нити накаливания, молодой дипломат и т.д. Для формального представления таких качественных знаний американский математик, профессор информатики в Университете в Беркли (Калифорния) Лофти А.Заде (Иран) предложил в 1965 году формальный аппарат нечеткой (fuzzy) логики [38].
Нечеткое подмножество N множества M определяется как множество упорядоченных пар N = {μN(x)/x}, где μN(x) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в интервале [0, 1] и указывающая степень (или уровень) принадлежности элемента x подмножеству N. Таким образом, нечеткое множество N можно записать как
n
N = Σ(μ(Xi) / Xi),
i=1
где Xi - i-е значение базовой шкалы, а знак "+" не является обозначением операции сложения, а имеет смысл объединения.
Определим лингвистическую переменную (ЛП) как переменную, значение которой определяется набором словесных характеристик некоторого свойства. Например, ЛП "возраст" может иметь значения
ЛП = МлВ, ДВ, ОВ, ЮВ, МВ, ЗВ, ПВ, СВ ,
обозначающие возраст младенческий, детский, отроческий, юношеский, молодой, зрелый, преклонный и старый, соответственно. Множество M - это шкала прожитых человеком лет [0..120]. Функция принадлежности определяет, насколько мы уверены, что данное количество прожитых лет можно отнести к данному значению ЛП. Допустим, что неким экспертом к молодому возрасту отнесены люди в возрасте 20 лет со степенью уверенности 0,8, в возрасте 25 лет со степенью уверенности 0,95, в возрасте 30 лет со степенью уверенности 0,95 и в возрасте 35 лет со степенью уверенности 0,7. Итак:
μ(X1)=0,8; μ(X2)=0,95; μ(X3)=0,95; μ(X4)=0,7;
Значение ЛП=МВ можно записать:
МВ = μ(X1) / X1 + μ(X2) / X2 + μ(X3) / X3 + μ(X4) / X4 =
= 0,8 / X1 + 0,95 / X2 + 0,95 / X3 + 0,7 / X4 .
Таким образом, нечеткие множества позволяют учитывать субъективные мнения отдельных экспертов. Для большей наглядности покажем множество МВ графически при помощи функции принадлежности (рис. 2.7).
Рис. 2.7. График функции принадлежности
Для операций с нечеткими множествами существуют различные операции, например, операция "нечеткое ИЛИ" (иначе ) задается в логике Заде [39], [40]:
μ(x)=max(μ1(x), μ2(x))
и при вероятностном подходе так:
μ(x)=μ1(x)+μ2(x)-μ1(x) · μ2(x).
Существуют и другие операции над нечеткими числами, такие как расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел, определяемые через соответствующие операции для четких чисел с использованием принципа обобщения и т.д.
Как мы увидим в дальнейшем, нечеткие множества (другое название - мягкие вычисления) очень часто применяются в экспертных системах. Нечеткая логика применяется как удобный инструмент для управления технологическими и индустриальными процессами, для интеллектуального домашнего хозяйства и электроники развлечения, в системах обнаружения ошибок и других экспертных системах. Разработаны специальные средства нечеткого вывода, например, инструментальное средство Fuzzy CLIPS. Нечеткая логика была изобретена в Соединенных Штатах, и сейчас быстрый рост этой технологии начался в Японии, Европе и теперь снова достиг США.
Развитием этого направления является реализации в системах представления знаний НЕ-факторов: неполнота, неточность, недоопределенность, неоднозначность, некорректность и др. [41].
Завершая лекцию по СПЗ, следует отметить следующее. Системы представления знаний и технологии работы со знаниями продолжают развиваться. Читатель может самостоятельно познакомиться с новым языком описания декларативных знаний (ЯОДЗ) и технологией функционально-ориентированного проектирования (ФОП-технологией) для решения информационно-сложных задач в работах [42], [43].
Кроме традиционных языков (LISP, PROLOG, SMALLTALK, РЕФАЛ) и инструментальных средств (LOOPS, KEE, ART) для представления знаний в настоящее время появляются новые веб-ориентированные версии ИС [44]. Весьма популярными стали средства на базе JAVA: системы Exsys Corvid, JESS. Язык HTML явился основой для представления знаний в среде Интернет [3]. С такими современными средствами, как система G2 и система CLIPS, читатель сможет познакомиться в лекциях 6 и 7.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом