4.1. Общая характеристика задач распознавания образов и их типы.
Под образом понимается структурированное описание изучаемого объекта или явления, представленное векторомпризнаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих соответствующий объект. Общая структура системы распознавания и этапы в процессе ее разработки показаны на рис. 4.1.
Рис. 4.1. Структура системы распознавания
Суть задачи распознавания - установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющим отнести их к определенному классу.
Задачи распознавания имеют следующие характерные черты.
Это информационные задачи, состоящие из двух этапов: а) приведение исходных данных к виду, удобному для распознавания; б) собственно распознавание (указание принадлежности объекта определенному классу).
В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.
В этих задачах можно оперировать набором прецедентов-примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.
Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов не соизмерим с затратами).
В этих задачах возможна "плохая" информация (информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная).
Целесообразно выделить следующие типы задач распознавания.
Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем).
Задача автоматической классификации - разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, обучение без учителя).
Задача выбора информативного набора признаков при распознавании.
Задача приведения исходных данных к виду, удобному для распознавания.
Динамическое распознавание и динамическая классификация - задачи 1 и 2 для динамических объектов.
Задача прогнозирования - это задачи 5, в которых решение должно относиться к некоторому моменту в будущем.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом