4.2. Распознавание по методу аналогий.
Этот метод очень хорошо знаком студентам (знание решения аналогичной задачи помогает в решении текущей задачи).
Рассмотрим этот метод на примере задачи П. Уинстона [5] по поиску геометрических аналогий, представленном на рис. 4.4. Среди фигур второго ряда требуется выбрать X {1, 2, 3, 4, 5} такое, что A так соотносится с B, как C соотносится с X, и такое, которое лучше всего при этом подходит. Для решения задачи необходимо понять, в чем разница между фигурами A и B (наличие/отсутствие жирной точки), и после этого ясно, что лучше всего для C подходит X=3 .
Решение таких задач предполагает описание изображения и преобразования (отношения между фигурами на изображениях), а также описание изменения отдельных фигур, составление правил и оценка изменений.
Рис. 4.4. Задача поиска геометрических аналогий
В качестве примера запишем три правила, показывающие, каким образом одно изображение (исходное) становится результирующим (рис. 4.5).
Правило 1 (исходное изображение):k выше m,k выше n,n внутри m
Правило 2 (результир. изображение):n слева m
Правило 3 (масшабирование, повороты):
kисчезло
mизменение масштаба 1:1, вращение 00
nизменение масштаба 1:2, вращение 00
Рис. 4.5. Правила преобразования
Отметим важные моменты при таких преобразованиях. В исходном и результирующем изображениях допускаются отношения ВЫШЕ, ВНУТРИ, СЛЕВА, В результате преобразования изображение может стать МЕНЬШЕ, БОЛЬШЕ, испытать ПОВОРОТ или ВРАЩЕНИЕ, ОТРАЖЕНИЕ, УДАЛЕНИЕ, ДОБАВЛЕНИЕ. Написание правил лучше всего начинать с проведения диагональных линий через центры фигур. Лишние отношения (СПРАВА ОТ и СЛЕВА ОТ, ВЫШЕ и НИЖЕ, ИЗНУТРИ и СНАРУЖИ,) использовать не рекомендуется.
Теперь задачи распознавания мы можем решать достаточно просто, записав для отношений правила 1, 2, 3 и проведя сопоставление, например так, как это сделано для следующей задачи: найти X такое, что A B , как C X (рис. 4.6).
Рис. 4.6. Пример распознавания по аналогии
Правило 1 Правило 2 Правило 3 Результат
A B kвыше m kслева m k, m масштаб 1:1 поворот 00
C 1 xвыше y yвыше x x, y масштаб 1:1 поворот 00
C 2 xвыше y yслева x x, y масштаб 1:1 поворот 00
C 3 xвыше y xслева y x, y масштаб 1:1 поворот 00
Сопоставление успешно
Дополнительно следует отметить, что разные виды преобразований могут иметь различные веса, например, исчезновению фигуры целесообразно назначить больший вес, чем преобразованию масштаба; а вращение фигуры может иметь меньший вес, чем отражение. С этими особенностями можно будет познакомиться в упражнениях к данной лекции.
Методы распознавания по аналогии могут быть эффективнее, если используется обучение. Различают обучение с учителем, обучение по образцу (эталону) и др. виды обучения [2], [5]. Суть идеи такова. Программе распознавания предъявляется объект, например, арка. Программа создает внутреннюю модель:
(арка
(компонент1 (назначение (опора))
(тип (брусок)))
(компонент2 (назначение (опора))
(тип (брусок)))
(компонент3 (назначение (перекладина))
(тип (брусок))
(поддерживается (компонент1), (компонент2)))
После этого предъявляется другой объект и говорится, что это тоже арка. Программа вынуждена дополнить свою внутреннюю модель:
(арка
(компонент1 (назначение (опора))
(тип (брусок)))
(компонент2 (назначение (опора))
(тип (брусок)))
(компонент3 (назначение (перекладина))
(тип (брусок) или (клин) )
(поддерживается (компонент1), (компонент2)))
После такого обучения система распознавания будет узнавать в качестве арки как первый, так и второй объект.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом