logo
Интеллектуальные Информационные Системы / лекции

Распознавание изображений.

Рождение робототехники выдвинуло задачи машинного зрения и распознавания изображений в число первоочередных.

В традиционном распознавании образов появился хорошо разработанный математический аппарат, и для не очень сложных объектов оказалось возможным строить практически работающие системы классификации по признакам, по аналогии и т. д. В качестве признаков могут рассматриваться любые характеристики распознаваемых объектов. Признаки должны быть инвариантны к ориентации, размеру и вариациям формы объектов. Алфавит признаков придумывается разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно придуман алфавит признаков. Распознавание состоит в априорном получении вектора признаков для выделенного на изображении отдельного распознаваемого объекта, и лишь затем в определении того, какому из эталонов этот вектор соответствует.

П. Уинстон в начале 80-х годов обратил внимание на необходимость реализации целенаправленного процесса машинного восприятия. Цель должна управлять работой всех процедур, в том числе и процедур нижнего уровня, т. е. процедур предварительной обработки и выделения признаков. Должна иметься возможность на любой стадии процесса в зависимости от получаемого результата возвращаться к его началу для уточнения результатов работы процедур предшествующих уровней. У П. Уинстона, так же как и у других исследователей, до решения практических задач дело не дошло, хотя в 80-е годы вычислительные мощности больших машин позволяли начать решение подобных задач. Таким образом, ранние традиционные системы распознавания, основывающиеся на последовательной организации процесса распознавания и классификации объектов, эффективно решать задачи восприятия сложной зрительной информации не могли.