3.4. Задачи планирования последовательности действий
Многие результаты в области ИИ достигнуты при решении " задач для робота ". Одной из таких простых в постановке и интуитивно понятных задач является задача планирования последовательности действий, или задача построения планов.
В наших рассуждениях будут использованы примеры традиционной робототехники (современная робототехника во многом основывается на реактивном управлении, а не на планировании). Пункты плана определяют атомарные действия для робота. Однако при описании плана нет необходимости опускаться до микроуровня и говорить о датчиках, шаговых двигателях и т. п. Рассмотрим ряд предикатов, необходимых для работы планировщика из мира блоков. Имеется некоторый робот, являющийся подвижной рукой, способной брать и перемещать кубики. Рука робота может выполнять следующие задания (U, V, W, X, Y, Z - переменные).
goto(X,Y,Z)перейти в местоположение X,Y,Z
pickup(W)взять блок W и держать его
putdown(W)опустить блок W в некоторой точке
stack(U,V)поместить блок U на верхнюю грань блока V
unstack(U,V)убрать блок U с верхней грани блока V
Состояния мира описываются следующим множеством предикатов и отношений между ними.
on(X,Y)блок X находится на верхней грани блока Y
clear(X)верхняя грань блока Х пуста
gripping(X)захват робота удерживает блок Х
gripping()захват робота пуст
ontable(W)блок W находится на столе
Рис. 3.8. Начальное и целевое состояния задачи из мира кубиков
Предметная область из мира кубиков представлена на рис. 3.8 в виде начального и целевого состояния для решения задачи планирования. Требуется построить последовательность действий робота, ведущую (при ее реализации) к достижению целевого состояния.
Состояния мира кубиков представим в виде предикатов. Начальное состояние можно описать следующим образом:
start = [handempty, ontable(b),
ontable(c), on(a,b), clear(c),
clear(a)]
где: handempty означает, что рука робота Робби пуста.
Целевое состояние записывается так:
goal = [handempty, ontable(a),
ontable(b), on(c,b), clear(a),
clear(c)]
Теперь запишем правила, воздействующие на состояния и приводящие к новым состояниям.
(X) (pickup(X) (gripping(X) ←
(gripping() clear(X) ontable(X))))
(X) (putdown(X) ((gripping()
ontable(X) clear(X)) ← gripping(X)))
(X) (Y) (stack(X,Y)
((on(X,Y) gripping() clear(X)) ←
(clear(Y) gripping(X))))
(X) (Y) (unstack(X,Y)
((clear(Y) gripping(X)) ←
(on(X,Y) clear(X) gripping()))
Прежде чем использовать эти правила, необходимо упомянуть о проблеме границ. При выполнении некоторого действия могут изменяться другие предикаты и для этого могут использоваться аксиомы границ - правила, определяющие инвариантные предикаты. Одно из решений этой проблемы предложено в системе STRIPS.
В начале 1970-х годов в Стэнфордском исследовательском институте (Stanford Research Institute Planning System) была создана система STRIPS для управления роботом. В STRIPS четыре оператора pickup, putdown, stack,unstack описываются тройками элементов. Первый элемент тройки - множество предусловий (П), которым удовлетворяет мир до применения оператора. Второй элемент тройки - список дополнений (Д), которые являются результатом применения оператора. Третий элемент тройки - список вычеркиваний (В), состоящий из выражений, которые удаляются из описания состояния после применения оператора.
Ведя рассуждения для рассматриваемого примера от начального состояния, мы приходим к поиску в пространстве состояний. Требуемая последовательность действий (план достижения цели) будет следующей:
unstack(A,B), putdown(A), pickup(C), stack(C,B)
Для больших графов (сотни состояний) поиск следует проводить с использованием оценочных функций. Более подробно о работах по планированию, в том числе современные публикации по адаптивному планированию, можно прочитать в литературе [7], [47], [48], [49], [50].
В качестве заключения по данному разделу лекции следует сказать, что планирование достижения цели можно рассматривать как поиск в пространстве состояний. Для нахождения пути из начального состояния к целевому (плана последовательности действий робота) могут применяться методы поиска в пространстве состояний с использованием исчисления предикатов.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом