4.1 Операторы отношения и логические операторы
Операторы отношения служат для поэлементного сравнения двух операндов, в качестве которых могут выступать числа, векторы или матрицы. При этом сравниваемые векторы или матрицы должны иметь одинаковые размеры. Если операнды одинаковы, то программа возвращает 1 (True – Истина), в противном случае – 0 (False – Ложь). Перечень операторов отношения с соответствующими им функциями представлен в таблице 4.1.
Таблица 4.1. Операторы отношения и их функции
Оператор | Название | Функция |
== | Равно | Eq |
~= | Не равно | Ne |
< | Меньше | Lt |
> | Больше | Gt |
<= | Меньше или равно | Le |
>= | Больше или равно | Ge |
Операторы = = и ~= сравнивают действительные и комплексные переменные. При этом сравниваются действительные и комплексные части числа.
Операторы <, <=, >, >= при сравнении комплексных чисел сравнивают только действительные части числа.
Примеры приведены в табл. 4.2.
Таблица 4.2. Примеры использования операторов отношения
Выражение | Функция | Результат |
>> 3==3 | >> eq(3,3) | ans = 1 |
>> 5~=5 | >> ne(5,5) | ans = 0 |
>> 4+2i==4+i | >> eq(4+2i,4+i) | ans = 0 |
>> 7.2<8.3 | >> lt(7.2,8.3) | ans = 1 |
>> 1.4+5i<1.5+i | >> lt(1.4+5i,1.5+i) | ans = 1 |
>> 3<=2.33 | >> le(3,2.33) | ans = 0 |
Если при вычислениях надо формально определить, является ли переменная x комплексной, можно вызвать функцию isreal(x), возвращающую 1 если x не является комплексной и 0 в противном случае.
В выражениях, вводимых в командном окне системы MATLAB, операторы отношения могут использоваться наряду с арифметическими операторами. Рассмотрим пример вычисления выражения, содержащего операторы отношения:
>> a=1;b=-1;c=2;
>> (a>=c)+(b==a)+(c>a)
ans =
1
Здесь значения выражений (a >= c) и (b == a) равны 0 (Ложь), значение выражения (c > a) равно 1 (Истина). В результате переменная ans, являющаяся суммой значений этих трех выражений, оказывается равной 1.
Операции отношения имеют более низкий приоритет, чем арифметические операции. Но в этом примере переменная ans равна сумме значений трех операций отношения только потому, что эти операции заключены в круглые скобки. Если же скобки опустить, результат будет иным:
>> a>=c+b==a+c>a
ans =
0
При поэлементном сравнении двух массивов одинаковых размеров с помощью операторов отношения результат будет представлен в виде массива того же размера, состоящего из нулей и единиц.
Пример:
>> A=[1 0;-2 3]
A =
1 0
-2 3
>> B=[2 3;-3 2]
B =
2 3
-3 2
>> A>B
ans =
0 0
1 1
В операторах отношения допустимо сравнение массива и числа. В этом случае происходит сравнение каждого элемента массива с числом. Результатом является массив того же размера, что и исходный.
Пример:
>> A=[1 0;-2 3];b=0.5;
>> A>b
ans =
1 0
0 1
Логические операторы предназначены для выполнения поэлементных логических операций над массивами одинаковых размеров. Логические операторы и соответствующие им функции приведены в табл. 4.3.
Таблица 4.3. Логические операторы и их функции
Оператор | Название | Функция |
& | Логическое И | And |
| | Логическое ИЛИ | Or |
Отсутствует | Исключающее ИЛИ | Xor |
~ | Логическое НЕ | Not |
Первые три операции являются двухоперандными (бинарными), а операция < Не > является унарной (однооперандной).
При выполнении логических операций «истинными» считаются операнды, не равные нулю, а «ложными» – операнды, равные нулю. При этом результатом операции < И > будет 1, если оба операнда не равны нулю, и 0, если хотя бы один из операндов нулевой. Операция < ИЛИ > дает 1, если хотя бы один операнд не равен нулю. Операция < исключающее ИЛИ > выдает 1 лишь тогда, когда один из операндов равен нулю, а другой не равен, в остальных случаях она выдает 0. Операция < НЕ > выдает 1, если ее единственный операнд равен нулю, и 0 в противном случае.
Примеры использования логических операторов:
>> A=[1 0;-2 3];B=[2 3;-3 2];
>> and(A,B) или >> A&B
ans =
1 0
1 1
>> or(A,B) или >> A|B
ans =
1 1
1 1
>> xor(A,B)
ans =
0 1
0 0
>> not(A) или >> ~A
ans =
0 1
0 0
Элементами логических операторов могут быть массив и число. В этом случае происходит поэлементное выполнение логической операции для каждого элемента массива и числа. Результатом является массив того же размера, что и исходный.
Пример:
>> A=[1 0;-2 3];b=3;
>> xor(A,b)
ans =
0 1
0 0
Поскольку логические и арифметические операции могут входить в одно выражение, порядок выполнения этих операций зависит от их приоритета. Выполнение операций одинакового приоритета происходит в порядке слева направо. Приоритет операций можно изменить с помощью круглых скобок.
Приоритеты операций системы MATLAB в порядке убывания приведены ниже:
1. Круглые скобки <( )>.
2. Транспонирование <.'>, транспонирование с комплексным сопряжением<'>, возведение в степень <^>, поэлементное возведение в степень <.^>.
3. Унарный плюс <+>, унарный минус <–>, логическое отрицание <~>.
4. Умножение и деление (в том числе поэлементное) <*>, </>, <\>, <.*>, <./>, <.\>.
5. Сложение <+> и вычитание <–>.
6. Операции отношения <, <=, >, >=, ==, ~=.
7. Логическое И <&>.
8. Логическое ИЛИ <|>.
Отметим, что сначала выполняются операции над аргументами функций eq, ne, lt, gt, le, ge, and, or, not, если использовать их вместо соответствующих им операторов. Например, два выражения and(A,B)+F и A&B+F не эквивалентны.
Справку можно получить с помощью команды doc ops.
- Основы работы и программирования, компьютерная математика Учебный курс
- Isbn ооо «Харвест», 2008
- Предисловие
- Введение
- Глава 1 знакомство с matlab и простейшие вычисления
- 1.1. Рабочая средаMatlab
- 1.2. Арифметические вычисления
- 1.3. Вещественные числа
- 1.4. Форматы вывода результата вычислений
- 1.5 Комплексные числа
- 1.6 Векторы и матрицы
- 1.7 Встроенные функции. Функции, задаваемые пользователем
- 1.8 Сообщения об ошибках и их исправление
- 1.9 Просмотр и сохранение переменных
- 1.10 Матричные и поэлементные операции над векторами и матрицами
- 1.11 Решение систем линейных уравнений
- Вопросы для самопроверки
- Глава 2 работа с массивами
- 2.1 Создание векторов и матриц
- 2.2 Применение команд обработки данных к векторам и матрицам
- 2.3 Создание специальных матриц
- 2.4 Создание новых массивов на основе существующих
- 2.5 Вычисление собственных значений и собственных векторов. Решение типовых задач линейной алгебры
- Вопросы для самопроверки
- Глава 3 м-файлы
- 3.1 Файл-программы
- 3.2 Файл-функции
- Вопросы для самопроверки
- Глава 4 программирование
- 4.1 Операторы отношения и логические операторы
- 4.2 Операторы цикла
- 4.3 Операторы ветвления
- 4.4 Оператор переключения switch
- 4.5 Оператор прерывания цикла break
- 4.6 Пример сравнения быстродействия матричных и скалярных операций
- Вопросы для самопроверки
- Глава 5 высокоуровневая графика
- 5.1 2D графика
- 5.1.1 Графики в линейном масштабе
- 5.2 Специальные виды 2d - графиков
- 5.2.1 Представление функции в виде дискретных отсчетов
- 5.2.2 Лестничные графики
- 5.2.3 Графики с указанием погрешности
- 5.2.4 Графики в логарифмическом и полулогарифмическом масштабах
- 5.2.5 Графики параметрических функций
- 5.3 3D графика
- 5.3.1 Линейчатые поверхности
- 5.3.2 Каркасные поверхности
- 5.3.3 Контурные графики
- 5.3.4 Сплошная освещенная поверхность
- 5.4 Оформление, экспорт и анимация
- 5.4.1 Оформление графиков
- 5.4.2 Сохранение и экспорт графиков
- 5.4.3 Анимация
- Вопросы для самопроверки
- Глава 6 прикладная численная математика
- 6.1 Операции с полиномами
- 6.2 Решение уравнений и их систем
- 6.3 Минимизация функции одной переменной
- 6.4 Минимизация функции нескольких переменных
- 6.5 Вычисление определенных интегралов
- 6.6 Решение дифференциальных уравнений
- 6.7 Аппроксимация и интерполяция данных
- 6.8 Интерполяция двумерных и многомерных данных
- Вопросы для самопроверки
- Глава 7 символьные вычисления
- 7.1 Символьные переменные, константы и выражения
- 7.2 Вычисления с использованием арифметики произвольной точности
- 7.3 Команды упрощения выражений – simplify, simple
- 7.4 Команда расширения выражений – expand
- 7.5 Разложение выражений на простые множители – команда factor
- 7.6 Приведение подобных членов – команда collect
- 7.7 Обеспечение подстановок – команда subs
- 7.8 Вычисление пределов – команда limit
- 7.9 Вычисление производных – команда diff
- 7.10 Вычисление интегралов – команда int
- 7.11 Разложение в ряд Тейлора – команда taylor
- 7.12 Вычисление суммы ряда – команда symsum
- 7.13 Решение уравнений и их систем – команда solve
- 7.14 Решение дифференциальных уравнений – команда dsolve
- 7.15 Прямое и обратное преобразования Лапласа – команды laplace,ilaplace
- 7.16 Графики символьных функций – команды ezplot, ezpolar
- 7.17 Прямой доступ к ядру системы Maple – командаmaple
- 7.18 Разложение рациональной дроби на сумму простейших дробей
- 7.19 Интерполяционный полином Лагранжа
- 7.20 Решение неравенств и систем неравенств
- 7.21 Разложение в ряд Тейлора функции нескольких переменных
- 7.22 Решение дифференциальных уравнений с помощью степенных рядов
- 7.23 Решение тригонометрических уравнений
- Вопросы для самопроверки
- Приложения Приложение 1. Справочная система matlab
- Приложение 2. Знакомство с пакетами расширения системыMatlab
- Приложение 3. Задания для самостоятельной работы
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Литература