2.3 Создание специальных матриц
В MATLAB предусмотрены команды для создания векторов и матриц специального вида. Рассмотрим некоторые из них:
zeros(M,N) – создает матрицу размером M×N c нулевыми элементами:
>> zeros(3,4)
ans =
0 0 0 0
0 0 0 0
0 0 0 0
ones(M,N) – создает матрицу размером M×N c единичными элементами:
>> ones(3,4)
ans =
1 1 1 1
1 1 1 1
1 1 1 1
eye(M,N) – создает матрицу размером M×N c единицами по главной диагонали и остальными нулевыми элементами:
>> eye(3,4)
ans =
1 0 0 0
0 1 0 0
0 0 1 0
rand(M,N) – создает матрицу размером M×N из случайных чисел, равномерно распределенных в диапазоне от 0 до 1:
>> rand(3,4)
ans =
0.9501 0.4860 0.4565 0.4447
0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919
randn(M,N) – создает матрицу размером M×N из случайных чисел, распределенных по нормальному закону с нулевым математическим ожиданием и стандартным (среднеквадратическим) отклонением, равным единице 1:
>> randn(3,4)
ans =
1.1908 -0.1567 -1.0565 0.5287
-1.2025 -1.6041 1.4151 0.2193
-0.0198 0.2573 -0.8051 -0.9219
Для всех перечисленных команд можно задавать один аргумент M в случае квадратной матрицы (M=N):
>> eye(3)
ans =
1 0 0
0 1 0
0 0 1
rot90 – осуществляет разворот матрицы на 90o против часовой стрелки:
>> Q=[1 2;3 4]
Q =
1 2
3 4
>> R=rot90(Q)
R =
2 4
1 3
D=diag(V) – диагональная матрица, элементы которой задаются во входном аргументе - векторе V;
D=diag(V,k) – диагональная матрица со смещенной на k позиций диагональю (положительные k – смещение вверх, отрицательные – вниз), результатом является квадратная матрица размера length(V)+abs(k);
d=diag(A) – выделение главной диагонали из матрицы A в вектор d;
d=diag(A,k) – выделение k-ой диагонали из матрицы A в вектор d.
Пример:
Создать трехдиагональную матрицу
A =
размера 5×5 с помощью рассмотренных выше команд.
Решение:
Введем вектор V с целыми числами от одного до пяти и используем его для создания диагональной матрицы и матрицы со смещенной на 2 вверх диагональю. Вектор длины четыре, содержащий двойки, заполняется, например, так: 2*ones(1,4). Этот вектор укажем в первом аргументе команды diag, а минус единицу – во втором и получим третью вспомогательную матрицу. Теперь достаточно вычесть из первой матрицы вторую и сложить с третьей:
>> V=1:5;
>> A=diag(V)-diag(V(1:3),2)+diag(2*ones(1,4),-1)
A =
1 0 -1 0 0
2 2 0 -2 0
0 2 3 0 -3
0 0 2 4 0
0 0 0 2 5
Более полная информация о специальных матрицах содержится в разделе elmat справочной системы MATLAB.
- Основы работы и программирования, компьютерная математика Учебный курс
- Isbn ооо «Харвест», 2008
- Предисловие
- Введение
- Глава 1 знакомство с matlab и простейшие вычисления
- 1.1. Рабочая средаMatlab
- 1.2. Арифметические вычисления
- 1.3. Вещественные числа
- 1.4. Форматы вывода результата вычислений
- 1.5 Комплексные числа
- 1.6 Векторы и матрицы
- 1.7 Встроенные функции. Функции, задаваемые пользователем
- 1.8 Сообщения об ошибках и их исправление
- 1.9 Просмотр и сохранение переменных
- 1.10 Матричные и поэлементные операции над векторами и матрицами
- 1.11 Решение систем линейных уравнений
- Вопросы для самопроверки
- Глава 2 работа с массивами
- 2.1 Создание векторов и матриц
- 2.2 Применение команд обработки данных к векторам и матрицам
- 2.3 Создание специальных матриц
- 2.4 Создание новых массивов на основе существующих
- 2.5 Вычисление собственных значений и собственных векторов. Решение типовых задач линейной алгебры
- Вопросы для самопроверки
- Глава 3 м-файлы
- 3.1 Файл-программы
- 3.2 Файл-функции
- Вопросы для самопроверки
- Глава 4 программирование
- 4.1 Операторы отношения и логические операторы
- 4.2 Операторы цикла
- 4.3 Операторы ветвления
- 4.4 Оператор переключения switch
- 4.5 Оператор прерывания цикла break
- 4.6 Пример сравнения быстродействия матричных и скалярных операций
- Вопросы для самопроверки
- Глава 5 высокоуровневая графика
- 5.1 2D графика
- 5.1.1 Графики в линейном масштабе
- 5.2 Специальные виды 2d - графиков
- 5.2.1 Представление функции в виде дискретных отсчетов
- 5.2.2 Лестничные графики
- 5.2.3 Графики с указанием погрешности
- 5.2.4 Графики в логарифмическом и полулогарифмическом масштабах
- 5.2.5 Графики параметрических функций
- 5.3 3D графика
- 5.3.1 Линейчатые поверхности
- 5.3.2 Каркасные поверхности
- 5.3.3 Контурные графики
- 5.3.4 Сплошная освещенная поверхность
- 5.4 Оформление, экспорт и анимация
- 5.4.1 Оформление графиков
- 5.4.2 Сохранение и экспорт графиков
- 5.4.3 Анимация
- Вопросы для самопроверки
- Глава 6 прикладная численная математика
- 6.1 Операции с полиномами
- 6.2 Решение уравнений и их систем
- 6.3 Минимизация функции одной переменной
- 6.4 Минимизация функции нескольких переменных
- 6.5 Вычисление определенных интегралов
- 6.6 Решение дифференциальных уравнений
- 6.7 Аппроксимация и интерполяция данных
- 6.8 Интерполяция двумерных и многомерных данных
- Вопросы для самопроверки
- Глава 7 символьные вычисления
- 7.1 Символьные переменные, константы и выражения
- 7.2 Вычисления с использованием арифметики произвольной точности
- 7.3 Команды упрощения выражений – simplify, simple
- 7.4 Команда расширения выражений – expand
- 7.5 Разложение выражений на простые множители – команда factor
- 7.6 Приведение подобных членов – команда collect
- 7.7 Обеспечение подстановок – команда subs
- 7.8 Вычисление пределов – команда limit
- 7.9 Вычисление производных – команда diff
- 7.10 Вычисление интегралов – команда int
- 7.11 Разложение в ряд Тейлора – команда taylor
- 7.12 Вычисление суммы ряда – команда symsum
- 7.13 Решение уравнений и их систем – команда solve
- 7.14 Решение дифференциальных уравнений – команда dsolve
- 7.15 Прямое и обратное преобразования Лапласа – команды laplace,ilaplace
- 7.16 Графики символьных функций – команды ezplot, ezpolar
- 7.17 Прямой доступ к ядру системы Maple – командаmaple
- 7.18 Разложение рациональной дроби на сумму простейших дробей
- 7.19 Интерполяционный полином Лагранжа
- 7.20 Решение неравенств и систем неравенств
- 7.21 Разложение в ряд Тейлора функции нескольких переменных
- 7.22 Решение дифференциальных уравнений с помощью степенных рядов
- 7.23 Решение тригонометрических уравнений
- Вопросы для самопроверки
- Приложения Приложение 1. Справочная система matlab
- Приложение 2. Знакомство с пакетами расширения системыMatlab
- Приложение 3. Задания для самостоятельной работы
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Варианты
- Литература