1.4. Определения, используемые в дисциплине иис
Предметом информатики является обработка информации по известным законам.
Предметом ИИ является изучение интеллектуальной деятельности человека, подчиняющейся заранее неизвестным законам. ИИ это все то, что не может быть обработано с помощью алгоритмических методов.
Система - множество элементов, находящихся в отношениях друг с другом и образующих причинно-следственную связь.
Адаптивная система - это система, которая сохраняет работоспособность при непредвиденных изменениях свойств управляемого объекта, целей управления или окружающей среды путем смены алгоритма функционирования, программы поведения или поиска оптимальных, в некоторых случаях просто эффективных, решений и состояний.
Традиционно, по способу адаптации различают самонастраивающиеся, самообучающиеся и самоорганизующиеся системы [4].
Алгоритм - последовательность заданных действий, которые однозначно определены и выполнимы на современных ЭВМ за приемлемое время для решаемой задачи.
ИС - это адаптивная система, позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде [5].
Сделаем два важных дополнения к данному определению.
К сфере решаемых ИС задач относятся задачи, обладающие, как правило, следующими особенностями:
в них неизвестен алгоритм решения задач (такие задачи будем называть интеллектуальными задачами);
в них используется помимо традиционных данных в числовом формате информация в виде изображений, рисунков, знаков, букв, слов, звуков;
в них предполагается наличие выбора (не существует алгоритма - это значит, что нужно сделать выбор между многими вариантами в условиях неопределенности). Свобода действий является существенной составляющей интеллектуальных задач.
Интеллектуальные робототехнические системы (ИРС) содержат переменную, настраиваемую модель внешнего мира и реальной исполнительной системы с объектом управления. Цель и управляющие воздействия формируются в ИРС на основе знаний о внешней среде, объекте управления и на основе моделирования ситуаций в реальной системе.
О каких признаках интеллекта уместно говорить применительно к интеллектуальным системам? ИС должна уметь в наборе фактов распознать существенные, ИС способны из имеющихся фактов и знаний сделать выводы не только с использованием дедукции, но и с помощью аналогии, индукции и т. д. Кроме того, ИС должны быть способны к самооценке - обладать рефлексией, то есть средствами для оценки результатов собственной работы. С помощью подсистем объяснения ИС может ответить на вопрос, почему получен тот или иной результат. Наконец, ИС должна уметь обобщать, улавливая сходство между имеющимися фактами.
Можно ли считать шахматную программу интеллектуальной системой? Если шахматная программа при повторной игре делает одну и ту же ошибку - то нельзя. Обучаемость, адаптивность, накопление опыта и знаний - важнейшие свойства интеллекта. Если шахматная программа реализована на компьютере с бесконечно-высоким быстродействием и обыгрывает человека за счет просчета всех возможных вариантов игры по жестким алгоритмам - то такую программу мы также не назовем интеллектуальной. Но если шахматная программа осуществляет выбор и принятие решений в условиях неопределенности на основе эффективных методов принятия решений и эвристик, корректируя свою игру от партии к партии в лучшую сторону, то такую программу можно считать достаточно интеллектуальной.
Всякий раз, как только возникают сомнения в интеллектуальности некоторой системы, договоримся вспоминать тест Алана Тьюринга на интеллектуальность. После этого сомнения и дальнейшие споры, как правило, прекращаются.
Следует определить также понятие знания - центрального понятия в ИС. Рассмотрим несколько определений.
Знания есть результат, полученный познанием окружающего мира и его объектов.
Знания - система суждений с принципиальной и единой организацией, основанная на объективной закономерности.
Знания - это формализованная информация, на которую ссылаются или которую используют в процессе логического вывода (рис. 1.1).
Под знаниями будем понимать совокупность фактов и правил. Понятие правила, представляющего фрагмент знаний, имеет вид: если <условие> то <действие>
Например, если X истинно и Y истинно, то Z истинно с достоверностью P.
Рис. 1.1. Процесс логического вывода в ИС
Определения 1 и 2 являются достаточно общими философскими определениями. В ИC принято использовать определение 3 для определения знаний. Определение 4 есть частный случай определения 3.
Под статическими знаниями будем понимать знания, введенные в ИС на этапе проектирования. Под динамическими знаниями (опытом) будем понимать знания, полученные ИС в процессе функционирования или эксплуатации в реальном масштабе времени.
Знания можно разделить на факты и правила. Под фактами подразумеваются знания типа «A это A», они характерны для баз данных. Под правилами (продукциями) понимаются знания вида «ЕСЛИ-ТО». Кроме этих знаний существуют так называемые метазнания (знания о знаниях). Создание продукционных систем для представления знаний позволило разделить знания и управление в компьютерной программе, обеспечить модульность продукционных правил, т. е. отсутствие синтаксического взаимодействия между правилами. При создании моделей представления знаний следует учитывать такие факторы, как однородность представления и простота понимания. Выполнить это требование в равной степени для простых и сложных задач довольно сложно.
Рассмотрим подробнее систему управления ИРС, структурная схема которой представлена на рис. 1.2. На этом рисунке стрелками обозначено направление движения информации, двунаправленными стрелками обозначено взаимодействие типа «запрос-ответ» и «действие-подтверждение», весьма распространенное в информационных системах. Входом системы является Блок ввода информации, предназначенный для ввода числовых данных, текста, речи, распознавания изображений. Информация на вход системы может поступать (в зависимости от решаемой задачи) от пользователя, внешней среды, объекта управления. Далее входная информация поступает в Блок логического вывода, либо сразу в базу данных (БД) - совокупность таблиц, хранящих, как правило, символьную и числовую информацию об объектах предметной области (в нашем курсе лекций - объектах робототехники).
Рис. 1.2. Структурная схема интеллектуальной робототехнической системы
Блок логического вывода (БЛВ) и формирования управляющей информации обеспечивает нахождение решений для нечетко формализованных задач ИС, осуществляет планирование действий и формирование управляющей информации для пользователя или объекта управления на основе Базы Знаний (БЗ), БД, Базы Целей (БЦ) и Блока Алгоритмических Методов Решений (БАМР).
БЗ - совокупность знаний, например, система продукционных правил, о закономерностях предметной области.
БЦ - это множество локальных целей системы, представляющих собой совокупность знаний, активизированных в конкретный момент и в конкретной ситуации для достижения глобальной цели.
БАМР содержит программные модули решения задач предметной области по жестким алгоритмам.
Блок усвоения знаний (БУЗ) осуществляет анализ динамических знаний с целью их усвоения и сохранения в БЗ.
Блок объяснения решений (БОР) интерпретирует пользователю последовательность логического вывода, примененную для достижения текущего результата.
На выходе системы Блок вывода информации обеспечивает вывод данных, текста, речи, изображений и другие результаты логического вывода пользователю и/или Объекту Управления (ОУ).
Контур обратной связи позволяет реализовать свойства адаптивности и обучения ИС. На этапе проектирования эксперты и инженеры по знаниям наполняют базу знаний и базу целей, а программисты разрабатывают программы алгоритмических методов решений. База данных создается и пополняется, как правило, в процессе эксплуатации ИС.
Динамика работы ИРС может быть описана следующим образом. При поступлении информации на внешнем языке системы на вход БВИ производится ее интерпретация во внутреннее представление для работы с символьной моделью системы. БЛВ выбирает из БЗ множество правил, активизированных поступившей входной информацией, и помещает эти правила в БЦ как текущие цели системы. Далее БЛВ по заданной стратегии, например, стратегии максимальной достоверности, выбирает правило из БЦ и пытается доопределить переменные модели внешнего мира и исполнительной системы с объектом управления. На основе этого активизируются новые правила БЗ и начинается логический вывод в системе продукций (правил). Эта процедура заканчивается, как только решение будет найдено, либо когда будет исчерпана БЦ. Найденное решение из внутреннего представления интерпретируется Блоком Вывода информации во внешний язык подсистемы управления низшего уровня и объекта управления. Более подробно этот процесс рассматривается в разделе 3.
- Интеллектуальные информационные системы
- 230201 - Информационные системы и технологии
- 080801 - Прикладная информатика в экономике
- Оглавление
- 1. Введение в интеллектуальные информационные системы
- 1.1. Предмет исследования искусственного интеллекта
- 1.2. Определение иис
- 1.3. Искусственный интеллект и интеллектуальное поведение
- 1.4. Определения, используемые в дисциплине иис
- 1.5. Исторический обзор работ в области ии
- Доказательство теорем.
- Распознавание изображений.
- Экспертные системы.
- Машинный перевод и понимание текстов на естественном языке.
- Игровые программы.
- Машинное творчество.
- 1.6. Кратко о развитии робототехники
- 1.7. Области коммерческого использования искусственного интеллекта
- 1.8. Иис других типов
- 1.9. Интеллектуальные агенты
- 1.10. Примеры иис
- 2. Системы представления знаний
- 2.1. Фреймы
- 2.2. Исчисления предикатов
- 2.3. Системы продукций
- 2.4. Семантические сети
- 2.5. Нечеткая логика
- 3. Методы поиска решений
- 3.1. Методы поиска решений в пространстве
- 3.2. Алгоритмы эвристического поиска
- Алгоритм наискорейшего спуска по дереву решений
- Алгоритм оценочных (штрафных) функций
- Алгоритм минимакса
- Альфа-бета-процедура
- 3.3. Методы поиска решений на основе исчисления предикатов
- 3.4. Задачи планирования последовательности действий
- 3.5. Поиск решений в системах продукций
- 4. Распознавание изображений
- 4.1. Общая характеристика задач распознавания образов и их типы.
- 4.2. Основы теории анализа и распознавания изображений.
- 4.2. Распознавание по методу аналогий.
- 4.3. Актуальные задачи распознавания
- 5. Общение с эвм на естественном языке. Системы речевого общения
- 5.1. Проблемы понимания естественного языка
- 5.2. Анализ текстов на естественном языке
- Морфологический анализ
- Синтаксический анализ
- Семантическая интерпретация
- Проблемный анализ
- 5.3. Системы речевого общения
- 6. Методология построения экспертных систем
- 6.1. Экспертные системы: Определения
- 6.2. Основные компоненты эс
- 6.3. Типы решаемых задач эс:
- 6.4. Ограничения и недостатки эс:
- 6.5. Обобщенная схема эс
- 6.6. Экспертные системы: классификация
- 6.7. Трудности при разработке экспертных систем
- 6.8. Методология построения экспертных систем
- 6.9. Примеры экспертных систем
- 7. Практическая разработка экспертных систем в среде clips
- 7.1 Постановка задачи
- 7.2. Основы программирования в системе clips
- 7.3. Программирование в clips экспертной системы управления технологическим процессом