Третье поколение экспертных интеллектуальных систем (эис)
Интеллектуальные интегрированные комплексы моделирования В наше время происходит переход к разработке и применению ЭИС третьего поколения ( 2007—2010 гг.) - интеллектуальным интегрированным комплексам моделирования. Главный смысл смены концепций (парадигмы) создания ЭИС и использования средств ИИ — это переход от предположений, справедливых только для изолированных систем ИИ, и от индивидуальных, автономных систем к распределенной обработке информации и разработке мультиагентных ИС . Главной особенностью перспективных систем является их распределенность, обеспечение обработки и применение распределенных знаний. Основой для создания перспективных ЭИС являются результаты, имеющиеся в области методов обнаружения закономерностей, распознавания образов, структурно-логического анализа данных и знаний, математической лингвистики, а также достигнутый опыт в разработке ЭИС. В создаваемых в настоящее время экспертных системах уже имеются отдельные вышеуказанные элементы. Перспективные ЭИС (экспертные интеллектуальные системы) должны обеспечивать обработку смыслов, а не только знаний и данных. Эти системы могут анализировать фразы естественного языка и строить соответствующие их семантическому содержанию сетевые структуры. ЭИС становится способной понимать смысл сообщений, формируемых в естественной форме, и синтезировать фразы, относящиеся к данной предметной области. Для этих целей актуальной задачей становится разработка систем распознавания управленческих ситуаций. Важная ее особенность заключается в том, что результат распознавания должен отражать смысл ситуации, который в нее вкладывают пользователи, эксперты, лица, принимающие решение (ЛПР). Для решения данной проблемы подготовлена хорошая теоретическая и практическая базы в области искусственного интеллекта и накопленный опыт создания и использования ЭИС, в том числе извлечения смысловой информации из Internet . Перспективная ЭИС (экспертная интеллектуальная система) должна строить модель исследуемой проблемной области, т. е. создавать ее теорию, строить модель пользователя (ученика, обучаемого) и модель самой себя, чтобы оптимизировать процесс формирования модели исследуемой операции (ситуации) в сознании обучаемого. Логический вывод перспективных ЭИС позволит имитировать человеческую способность рассуждений по аналогии и находить близость анализируемой и эталонной ситуаций (с помощью набора уже исследуемых ситуаций и хранящихся в памяти ЭВМ). Такой прием позволяет существенно ускорить процесс логического вывода, особенно в больших базах знаний. Блок анализа данных создаваемых систем должен обеспечивать обработку больших массивов разнотипных данных, представленных в триаде "объект—свойство—время". Программы распознавания позволяют в процессе обучения обнаруживать закономерные связи между описывающими и целевыми характеристиками объектов и использовать эти закономерности в процессе распознавания новых объектов. Перспективные ЭИС должны иметь средства автоматической поддержки и даже улучшения своих рабочих характеристик в ходе эксплуатации и поддержания гомеостатического состояния. Главной отличительной функцией интеллектуальной гибридной экспертной системы является умение давать правильные предсказания, рекомендации на основе обработки поступающих данных и выявления устойчивых (закономерных) связей между характеристиками данных. Возможный вариант перспективной ЭИС приведен на рисунке. Перспективная экспертная интеллектуальная система
В настоящее время наблюдается этап активного развития интегрированных интеллектуальных инструментальных средств. В такой системе объединяются возможности ключевых современных информационных технологий:
Вариант перспективной экспертной системы приведен на рисунке Таким образом, перспективная экспертная система представляет собой интегрированное интеллектуальное средство. Это самодостаточная графическая среда для разработки, внедрения и сопровождения в широком диапазоне условий. Для этих систем характерны следующие требования:
Принципы эффективного использования ЭИС (экспертных интеллектуальных систем) Для эффективного использования ЭИС в системах управления при их разработке реализуются три основных принципа:
|
Базовые понятия и структура ЭИС
Экспертные интеллектуальные системы относятся к СИИ, и полностью базируются на знаниях и правилах работы с ними. В этом разделе мы рассмотрим:
|
Базовые понятия экспертных интеллектуальных систем (ЭИС)
СИИ (системы искусственного интеллекта) основаны на использовании ИИ (искусственного интеллекта, и дают возможность специалисту получать консультации экспертов по любым проблемам, о которых этими системами накоплены знания. Но решение специальных задач требует специальных знаний. Экспертные знания Экспертные знания - знания, которыми располагает специалист в некоторой предметной области. Экспертная система (ЭИС) Экспертная интеллектуальная система (ЭИС) – это компьютерная программа, использующая экспертные знания для обеспечения высокоэффективного решения задач в некоторой узкой предметной области. Такие программы, как правило, представляют знания символически, исследуют и объясняют свои процессы рассуждения и предназначены для тех предметных областей, в которых людям для достижения мастерства необходимы годы специального обучения и практики. В большинстве случаев ЭИС предназначаются для оказания консультационной помощи специалистам при решении задач, возникающих в слабоструктурированных и трудно формализуемых предметных областях. К ЭИС относят также сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях (экспертов) и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей. Разновидности экспертных интеллектуальных систем (ЭИС) Существуют две основные разновидности ЭИС
Сходство и различия использования ИТ в экспертных системах и системах поддержки принятия решений Сходство информационных технологий, используемых в экспертных системах и системах поддержки принятия решений, состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Однако имеются три существенных различия:
Уровни реализации экспертной поддержки Экспертная поддержка принимаемых пользователем решений реализуется на двух уровнях.
Класс ЭИС (экспертных интеллектуальных систем) сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Полезными могут оказаться классификации, представленные на рисунке. Режимы работы экспертных систем Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭИС).
Структура статической экспертной интеллектуальной системы (ЭИС) Архитектура динамической экспертной интеллектуальной системы (ЭИС)
Статические и динамические ЭИС ЭИС статического типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Из рисунка, на котором представлены архитектура статической и динамической ЭИС видно, что в архитектуру динамической ЭИС по сравнению со статической ЭИС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭИС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий. Классификация информационных систем основанных на знаниях |
- Области применения ит - информационных технологий
- Современные ит - информационные технологии
- Цели внедрения информационных технологий
- Этапы развития ит (информационных технологий)
- Информационная система
- Общие понятия об информационных системах - ис
- Основные задачи информационных систем - ис
- Пользователи информационных систем - ис
- Процессы в информационных системах - ис
- Система. Общие понятия о системе
- Современные информационные системы - ис
- Этапы развития информационных систем - ис
- Математическое и программное обеспечение информационных систем - ис
- Организационное обеспечение информационных систем - ис
- Правовое обеспечение ис - информационных систем
- Техническое обеспечение информационной системы - ис.
- Принципы и методы создания ис - информационных систем
- Методы и концепции создания ис - информационных систем
- Принципы создания информационных систем - ис
- Классификация информационных систем - ис
- Классификация ис по масштабности применения
- Классификация ис по концепции построения
- Классификация ис по оперативности обработки данных
- Классификация ис по признаку структурированности задач
- Классификация ис по сфере деятельности
- Классификация информационных систем по режиму работы
- Классификация информационных систем по степени автоматизации
- Классификация информационных систем по функциональности
- По квалификации персонала и управления
- По характеру обработки информации
- Аналитические ис репортинга, oltp, data mining
- Общие сведения об аналитических ис репортинга, oltp, data mining
- Базовая аналитическая система
- Классификация по области применения
- Классы аналитических систем
- Перспективы использования аналитических систем
- Применяемые виды анализа
- Системы репортинга
- Рынок систем репортинга
- Oltp - системы оперативной обработки транзакций
- Data Mining (dm) - интеллектуальный анализ данных
- Типы закономерностей
- Классы систем Data Mining - dm
- Алгоритмы ограниченного перебора
- Генетические алгоритмы
- Деревья решений (decision trees)
- Нейронные сети
- Предметно-ориентированные аналитические системы
- Системы для визуализации многомерных данных
- Системы рассуждений на основе аналогичных случаев
- Статистические пакеты
- Эволюционное программирование
- Бизнес-приложения Data Mining
- Банковское дело
- Медицина
- Молекулярная и генная инженерия
- Розничная торговля
- Страхование
- Телекоммуникации
- Проблемы, связанные с использованием Data Mining dm-технологии
- Olap-системы оперативной аналитической обработки данных
- Недостатки olap
- Основные преимущества olap-систем
- Предпосылки и причины появления olap
- Принципы проектирования и использования многомерных бд
- Типы используемых данных
- Многомерная модель данных
- Гиперкубические и поликубические модели данных
- Операции с измерениями
- Требования к olap-средствам
- 12 Основных правил olap- систем по Кодду
- Fasmi Пендса и Крита
- Кубы olap
- Спуск и консолидация
- Члены и метки. Иерархии. Аналитические операции.
- Классификация olap по типу доступа к бд
- Достоинства и недостатки rolap
- Метаданные
- Другие olap. Holap. Dolap. Jolap.
- По месту размещения olap - машин
- Olap-клиент
- Olap-сервер
- Применение olap - систем
- Преимущества и недостатки
- Определение dss (сппр)
- Характеристики dss (сппр)
- Структура сппр
- Бм и субм
- Классификация
- Основные функции субм
- Система управления интерфейсом
- Управление сообщениями. Электронная почта.
- Data Warehouse – хранилище данных - хд - систем обработки данных
- Цели и задачи хранилищ данных
- Концепция хд - хранилища данных
- Единый источник даннх
- Свойства данных
- Структура ис на основе хд
- Методы организации хд
- Data Mart - Витрины данных
- Интегрированное хд - хранилище данных
- Непроектируемые витрины данных
- Система постепенно развиваемых витрин данных
- Data Warehouse Bus - хд с архитектурой шины
- Объединенное (федеративное) хд
- Требования к техническому и программному обеспечению
- Основные компоненты хд
- Проблемы интеграции данных
- Сравнение оперативных и аналитических бд
- Средства и методы построения хд - хранилищ данных
- Применение готовых хранилищ данных
- Студии для построения хд - хранилищ данных
- Подход сверху вниз
- Подход снизу вверх
- Рекомендации по внедрению хд
- Финансовые хранилища данных (хд)
- Хд для управления человеческими ресурсами
- Хранилища данных (хд) в области телекоммуникаций
- Хранилища данных (хд) с возможностями Data Mining и Exploration
- Хранилища данных в области страхования
- Тенденции развития хранилищ данных
- Операции и процедуры
- Функции управления
- Принципы управления
- Информационные технологии и системы управления
- Информационные технологии управления
- Информационные системы управления (ису)
- Виды обеспечений в составе иасу
- Уровни управления
- Ис организационного управления (исоу)
- Ису "Галактика"
- Система управления Парус
- Корпоративные информационные системы - кис
- Определения и назначения кис
- Перспективы развития корпоративных информационных систем (кис)
- Современные корпоративные информационные системы
- Структура корпоративных информационных систем
- Требования к корпоративным базам данных
- Требования к техническому обеспечению кис
- Кис и Internet, Intranet-технологии
- Особенности создания кис на базе Workflow-систем
- Системы управления документами - суд
- Средства обработки бумажных документов
- Мировой рынок корпоративных информационных систем
- Экспертные интеллектуальные ис (информационные системы)
- Структура и типы сии
- Терминология систем искусственного интеллекта
- Эволюция экспертных систем
- Второе поколение экспертных интеллектуальных систем (эис)
- Первое поколение экспертных систем
- Третье поколение экспертных интеллектуальных систем (эис)
- Назначение экспертных интеллектуальных систем (эис)
- Структура экспертных интеллектуальных систем
- База знаний (бз). Правила.
- Интерфейс пользователя - диалог с экспертной системой
- Решатель (интерпретатор, дедуктивная машина)
- Виды знаний в экспертных системах
- Организация знаний в базе данных
- Уровни представления и уровни детальности
- Особенности разработки экспертных интеллектуальных систем
- Технология разработки экспертных интеллектуальных систем
- Основные компоненты ис офисной автоматизации
- Ис управления бизнес-процессами
- Определение вмр( управление бизнес-процессами)
- Примеры использования вмр(Business Performance Management)
- Ис банковской деятельности
- Программно-техническая платформа абс(автоматизированной банковской системы)
- Функциональная структура абс (автоматизированной банковской системы)
- Районный уровень статистичекой службы Украины
- Региональный (областной) уровень статистичекой службы Украины
- Центральный (государственный) уровень статистичекой службы Украины
- Ис в налоговых органах Украины
- Автоматизированная информационная система (аис) «Налоги»
- Ис(информационная система) в страховании
- Функциональные подсистемы аис «Страхование»
- Информационное обеспечение системы страхования
- Ис(информационные системы) управления персоналом
- Функциональная направленность систем управления персоналом
- Эффекты от внедрения hr-систем управления персоналом
- Ис(информационные системы) на основе производственных стандартов
- Эволюция стандартов планирования производства
- Стандарт mrp II (Manufacturing Resource Planning)
- Подробнее об mrp1 - стандарте планирования материальных ресурсов
- Входные элементы mrp-системы
- Основные операции, достоинства и недостатки mrp-системы
- Преимущества и процесс планирования mrp-систем
- Принцип работы mrp-системы и результаты работы
- Требования к производству для успешного внедрения mrp-системы
- Цели и задачи системы-mpr
- Процесс crp(Capacity Requirements Planning)
- Входные данные crp(Capacity Requirements Planning)
- Значение crp(Capacity Requirements Planning)
- Подробнее о mrpii - стандарте планирование производственных ресурсов
- Процессы mprii
- Цели и задачи системы-mprii
- Функциональные блоки mrp II
- Планирование потребностей в сырье и материалах
- Главный календарный план производства
- Инструментальное обеспечение
- Интерфейс с финансовым планированием
- Оценка деятельности ( Performance Measurement ) в mrp II
- Планирование продаж и операций
- Планирование ресурсов распределения
- Управление входным и выходным материальным потоком в mrp II
- Преимущества mprii
- Концепция erp-системы
- Структура erp - системы
- Общая характеристика erp
- Преимущества erp - системы
- Csrp - стандарт(Customer Synchronized Resource Planning) и система
- Современная концепция управления ресурсами csrp
- Преимущества csrp
- Жизненный цикл - общие понятия
- Жизненный цикл изделия (жци)
- Этапы жци
- Классификация данных в связи со стадиями жци
- Маркетинг и исследование жизненного цикла.
- Разработка-производство жц
- Этапы жц промышленных изделий и системы их автоматизации
- Жизненный цикл ис
- Жизненный цикл производственных ис
- Cals-методология поддержки жц ис
- Cals-стратегия
- Cals-технологии
- Базовые принципы cals-технологии
- Безмужаное представление информации
- Виртуальное производство
- Интегрированная информационная среда cals
- Концепция cals
- Параллельный инжиниринг
- Реинжиниринг бизнес-процессов
- Системы cals
- Управление процессами
- Стандарты cals
- Другие стандарты cals
- Стандарт iso 10303 (step)
- Стандарт iso 13584 (p_lib) и семейство стандартов idef
- Применение cals