Цели и задачи хранилищ данных
Кроме определенной выше глобальной цели – создание единой модели данных, можно выделить т.н. «краткосрочные цели», которые дают немедленный выигрыш пользователям на каждом этапе реализации ХД. Вот несколько примеров краткосрочных целей. Краткосрочные цели Улучшение качества данных Поскольку обычным недостатком СППР являются "грязные данные", пользователь должен уделять внимание качеству своих данных на каждом этапе реализации ХД. Очистка данных представляет собой проблему в организации Хранилищ: с одной стороны, предполагается, что ХД обеспечит чистые, интегрированные, соответствующие и согласованные данные, извлеченные из множества источников; с другой стороны, есть расписание разработки, составленное в расчете на 6-12 месяцев. Практически невозможно достичь обеих целей одновременно, не идя на какие-либо компромиссы. Трудность в том, чтобы определиться с существом этих компромиссов. Подготовка данных для СППР Создание ХД позволяет произвести следующий этап автоматизации деятельности предприятия — подготовить данные для систем поддержки принятия решений. Основным отличием деятельности по принятию решений от исполнительской деятельности, с точки зрения используемых данных, является потребность во всестороннем видении процессов во всем многообразии параметров, от которых они зависят, за различные временные промежутки. Для создания систем поддержки принятия решений необходима полная, непротиворечивая, информация за различные временные промежутки, которая может быть как обобщена (просуммирована или агрегирована другим способом), так и детализирована. Минимизация количества несовместимых отчетов Другой распространенной проблемой сегодняшних сред СППР является несовместимость отчетов. Несовместимые отчеты в основном происходят от неправильного использования данных, и первопричиной этого является разногласия или непонимание значения или содержимого данных. Захват и доступ к метаданным Метаданные необходимы для совместного доступа к данным и навигации по ним. Сегодня к большинству данных нет совместного доступа по многим причинам, одной из которых является непонимание данных, а другой - недоверие к содержимому данных. Как только исходные данные очищены, преобразованы, агрегированы, просуммированы и рассечены несколькими различными способами, пользователи никогда снова не найдут их в ХД без помощи метаданных. Захват метаданных (то есть, определений данных, доменов, алгоритмов преобразования исходных данных, столбцы и таблицы, в которых находятся результирующие данные, и все другие технические компоненты) представляет собой возможное решение Обеспечение возможности совместного доступа к данным Если совместный доступ к данным является одной из задач ХД, то необходимо включить туда некоторую очистку данных, урегулирование разногласий по данным и компоненты средств доступа, основанные на метаданных в качестве инструментов достижения этой цели. Эти компоненты представляют собой предварительные условия совместного доступа к данным. Двумя другими существенными компонентами являются проектирование БД и организация доступа к ней. Проектирование БД - Базы Данных После того, как проанализированы требования, необходимые данные логически смоделированы и относящиеся к ним метаданные захвачены в репозиторий, следующим шагом является проект БД. Проектирование самостоятельной БД для одного бизнес-подразделения отличается от проектирования БД совместного доступа для множества бизнес-подразделений. Интеграция данных из множества источников Это существенная задача для всех ХД, поскольку это первостепенная проблема в различных СППР. Самостоятельные системы, имеющие одни и те же данные, идентифицируемые различными ключами, представляют собой одну из причин того, почему в большинстве компаний отсутствует интеграция данных. Некоторые другие причины заключаются в том, что содержимое данных в одном файле находится на отличном от другого файла уровне детализации или в том, что одни и те же данные модернизируются с разной периодичностью в различных файлах. Соединение исторических данных с текущими данными Типичной задачей ХД является сохранение истории. Эта задача сопровождается своими проблемами. Исторические данные редко хранятся в операционных системах, и даже если они там хранятся, трудно найти трехлетнюю или пятилетнюю историю в рамках одного файла |
- Области применения ит - информационных технологий
- Современные ит - информационные технологии
- Цели внедрения информационных технологий
- Этапы развития ит (информационных технологий)
- Информационная система
- Общие понятия об информационных системах - ис
- Основные задачи информационных систем - ис
- Пользователи информационных систем - ис
- Процессы в информационных системах - ис
- Система. Общие понятия о системе
- Современные информационные системы - ис
- Этапы развития информационных систем - ис
- Математическое и программное обеспечение информационных систем - ис
- Организационное обеспечение информационных систем - ис
- Правовое обеспечение ис - информационных систем
- Техническое обеспечение информационной системы - ис.
- Принципы и методы создания ис - информационных систем
- Методы и концепции создания ис - информационных систем
- Принципы создания информационных систем - ис
- Классификация информационных систем - ис
- Классификация ис по масштабности применения
- Классификация ис по концепции построения
- Классификация ис по оперативности обработки данных
- Классификация ис по признаку структурированности задач
- Классификация ис по сфере деятельности
- Классификация информационных систем по режиму работы
- Классификация информационных систем по степени автоматизации
- Классификация информационных систем по функциональности
- По квалификации персонала и управления
- По характеру обработки информации
- Аналитические ис репортинга, oltp, data mining
- Общие сведения об аналитических ис репортинга, oltp, data mining
- Базовая аналитическая система
- Классификация по области применения
- Классы аналитических систем
- Перспективы использования аналитических систем
- Применяемые виды анализа
- Системы репортинга
- Рынок систем репортинга
- Oltp - системы оперативной обработки транзакций
- Data Mining (dm) - интеллектуальный анализ данных
- Типы закономерностей
- Классы систем Data Mining - dm
- Алгоритмы ограниченного перебора
- Генетические алгоритмы
- Деревья решений (decision trees)
- Нейронные сети
- Предметно-ориентированные аналитические системы
- Системы для визуализации многомерных данных
- Системы рассуждений на основе аналогичных случаев
- Статистические пакеты
- Эволюционное программирование
- Бизнес-приложения Data Mining
- Банковское дело
- Медицина
- Молекулярная и генная инженерия
- Розничная торговля
- Страхование
- Телекоммуникации
- Проблемы, связанные с использованием Data Mining dm-технологии
- Olap-системы оперативной аналитической обработки данных
- Недостатки olap
- Основные преимущества olap-систем
- Предпосылки и причины появления olap
- Принципы проектирования и использования многомерных бд
- Типы используемых данных
- Многомерная модель данных
- Гиперкубические и поликубические модели данных
- Операции с измерениями
- Требования к olap-средствам
- 12 Основных правил olap- систем по Кодду
- Fasmi Пендса и Крита
- Кубы olap
- Спуск и консолидация
- Члены и метки. Иерархии. Аналитические операции.
- Классификация olap по типу доступа к бд
- Достоинства и недостатки rolap
- Метаданные
- Другие olap. Holap. Dolap. Jolap.
- По месту размещения olap - машин
- Olap-клиент
- Olap-сервер
- Применение olap - систем
- Преимущества и недостатки
- Определение dss (сппр)
- Характеристики dss (сппр)
- Структура сппр
- Бм и субм
- Классификация
- Основные функции субм
- Система управления интерфейсом
- Управление сообщениями. Электронная почта.
- Data Warehouse – хранилище данных - хд - систем обработки данных
- Цели и задачи хранилищ данных
- Концепция хд - хранилища данных
- Единый источник даннх
- Свойства данных
- Структура ис на основе хд
- Методы организации хд
- Data Mart - Витрины данных
- Интегрированное хд - хранилище данных
- Непроектируемые витрины данных
- Система постепенно развиваемых витрин данных
- Data Warehouse Bus - хд с архитектурой шины
- Объединенное (федеративное) хд
- Требования к техническому и программному обеспечению
- Основные компоненты хд
- Проблемы интеграции данных
- Сравнение оперативных и аналитических бд
- Средства и методы построения хд - хранилищ данных
- Применение готовых хранилищ данных
- Студии для построения хд - хранилищ данных
- Подход сверху вниз
- Подход снизу вверх
- Рекомендации по внедрению хд
- Финансовые хранилища данных (хд)
- Хд для управления человеческими ресурсами
- Хранилища данных (хд) в области телекоммуникаций
- Хранилища данных (хд) с возможностями Data Mining и Exploration
- Хранилища данных в области страхования
- Тенденции развития хранилищ данных
- Операции и процедуры
- Функции управления
- Принципы управления
- Информационные технологии и системы управления
- Информационные технологии управления
- Информационные системы управления (ису)
- Виды обеспечений в составе иасу
- Уровни управления
- Ис организационного управления (исоу)
- Ису "Галактика"
- Система управления Парус
- Корпоративные информационные системы - кис
- Определения и назначения кис
- Перспективы развития корпоративных информационных систем (кис)
- Современные корпоративные информационные системы
- Структура корпоративных информационных систем
- Требования к корпоративным базам данных
- Требования к техническому обеспечению кис
- Кис и Internet, Intranet-технологии
- Особенности создания кис на базе Workflow-систем
- Системы управления документами - суд
- Средства обработки бумажных документов
- Мировой рынок корпоративных информационных систем
- Экспертные интеллектуальные ис (информационные системы)
- Структура и типы сии
- Терминология систем искусственного интеллекта
- Эволюция экспертных систем
- Второе поколение экспертных интеллектуальных систем (эис)
- Первое поколение экспертных систем
- Третье поколение экспертных интеллектуальных систем (эис)
- Назначение экспертных интеллектуальных систем (эис)
- Структура экспертных интеллектуальных систем
- База знаний (бз). Правила.
- Интерфейс пользователя - диалог с экспертной системой
- Решатель (интерпретатор, дедуктивная машина)
- Виды знаний в экспертных системах
- Организация знаний в базе данных
- Уровни представления и уровни детальности
- Особенности разработки экспертных интеллектуальных систем
- Технология разработки экспертных интеллектуальных систем
- Основные компоненты ис офисной автоматизации
- Ис управления бизнес-процессами
- Определение вмр( управление бизнес-процессами)
- Примеры использования вмр(Business Performance Management)
- Ис банковской деятельности
- Программно-техническая платформа абс(автоматизированной банковской системы)
- Функциональная структура абс (автоматизированной банковской системы)
- Районный уровень статистичекой службы Украины
- Региональный (областной) уровень статистичекой службы Украины
- Центральный (государственный) уровень статистичекой службы Украины
- Ис в налоговых органах Украины
- Автоматизированная информационная система (аис) «Налоги»
- Ис(информационная система) в страховании
- Функциональные подсистемы аис «Страхование»
- Информационное обеспечение системы страхования
- Ис(информационные системы) управления персоналом
- Функциональная направленность систем управления персоналом
- Эффекты от внедрения hr-систем управления персоналом
- Ис(информационные системы) на основе производственных стандартов
- Эволюция стандартов планирования производства
- Стандарт mrp II (Manufacturing Resource Planning)
- Подробнее об mrp1 - стандарте планирования материальных ресурсов
- Входные элементы mrp-системы
- Основные операции, достоинства и недостатки mrp-системы
- Преимущества и процесс планирования mrp-систем
- Принцип работы mrp-системы и результаты работы
- Требования к производству для успешного внедрения mrp-системы
- Цели и задачи системы-mpr
- Процесс crp(Capacity Requirements Planning)
- Входные данные crp(Capacity Requirements Planning)
- Значение crp(Capacity Requirements Planning)
- Подробнее о mrpii - стандарте планирование производственных ресурсов
- Процессы mprii
- Цели и задачи системы-mprii
- Функциональные блоки mrp II
- Планирование потребностей в сырье и материалах
- Главный календарный план производства
- Инструментальное обеспечение
- Интерфейс с финансовым планированием
- Оценка деятельности ( Performance Measurement ) в mrp II
- Планирование продаж и операций
- Планирование ресурсов распределения
- Управление входным и выходным материальным потоком в mrp II
- Преимущества mprii
- Концепция erp-системы
- Структура erp - системы
- Общая характеристика erp
- Преимущества erp - системы
- Csrp - стандарт(Customer Synchronized Resource Planning) и система
- Современная концепция управления ресурсами csrp
- Преимущества csrp
- Жизненный цикл - общие понятия
- Жизненный цикл изделия (жци)
- Этапы жци
- Классификация данных в связи со стадиями жци
- Маркетинг и исследование жизненного цикла.
- Разработка-производство жц
- Этапы жц промышленных изделий и системы их автоматизации
- Жизненный цикл ис
- Жизненный цикл производственных ис
- Cals-методология поддержки жц ис
- Cals-стратегия
- Cals-технологии
- Базовые принципы cals-технологии
- Безмужаное представление информации
- Виртуальное производство
- Интегрированная информационная среда cals
- Концепция cals
- Параллельный инжиниринг
- Реинжиниринг бизнес-процессов
- Системы cals
- Управление процессами
- Стандарты cals
- Другие стандарты cals
- Стандарт iso 10303 (step)
- Стандарт iso 13584 (p_lib) и семейство стандартов idef
- Применение cals