9.10. Нахождение экстремальных значений на поверхности отклика
Запишем уравнение поверхности отклика в следующем виде
где xl,...,xk - независимые переменные, k - число факторов. Во многих случаях цель имитационного моделирования заключается в поиске таких величин или уровней независимых переменных, при которых отклик достигает экстремального значения. Для определения направления движения к экстремальной точке в случае использования количественных, непрерывных и измеряемых величин применяют ряд небольших, полных и неполных факторных экспериментов. Так как поверхность отклика неизвестна, то ее аппроксимируют какой-то гладкой функцией, в качестве которой обычно используют полином первого порядка
Параметры a0,al,...,ak,... оценивают по результатам факторного эксперимента.
Для поиска экстремума наиболее часто используют метод скорейшего подъема. Он основан на линейной аппроксимации поверхности отклика в окрестности рассматриваемой точки Р с помощью факторного эксперимента.
По построенной линейной функции определяется направление скорейшего подъема Q к точке оптимума (рис. 9.8). В направлении Q делается небольшой шаг, после чего описанная процедура повторяется снова. Метод не позволяет определить длину шага, однако, указывает направление движения.
Предположим, что исследователь провел в точке Р эксперимент с 2k комбинациями плюс два наблюдения в центре. Эксперимент позволяет определить коэффициенты а0, а1, а2 (для случая k = 2), которые определяют наклон плоскости аппроксимации. Направление скорейшего подъема показывает относительные величины изменения факторов, обеспечивающих максимальное увеличение отклика. Поднявшись по этому направлению до некоторой точки Р1, необходимо повторить всю процедуру. Такой итерационный процесс позволяет достигать все лучших и лучших значений отклика. Однако вблизи точки экстремума эта процедура неэффективна, так как коэффициенты а1, и a2, определяющие наклон аппроксимирующей плоскости, становятся небольшими и точность их оценивания низка. Это означает, что вблизи экстремальной точки линейная аппроксимация поверхности отклика является недостаточной и надо переходить к аппроксимации полиномом более высокой степени.
Для рассматриваемого примера эксперимент с 2k комбинациями достаточен для оценивания коэффициентов а0,a1,a2. Однако два добавочных наблюдения в геометрическом центре Р позволяют не только уточнить уравнение регрессии, но и получить несколько дополнительных степеней свободы для проверки статистической значимости оценок параметров регрессии. То же самое можно сделать с помощью повторного эксперимента. Вблизи экстремума поверхности желательно аппроксимировать поверхности отклика, по меньшей мере, полиномом второго порядка. Для этого используют приближение:
Для оценки коэффициентов регрессии этой модели необходимо измерить каждый фактор, по крайней мере, на трех уровнях, то есть использовать 3k-факторный эксперимент. Однако этот эксперимент дает довольно низкую точность оценок коэффициентов регрессии. Поэтому специально для квадратичных полиномов используют другие способы построения эксперимента. Из них наиболее полезными являются центральный композиционный или рототабельный планы. Они получаются путем добавления дополнительных точек к данным, полученным из 2k факторных экспериментов. Для рототабельного построения стандартная ошибка одинакова для равноудаленных от центра области точек. Такие построения разработаны для любого числа факторов и представляют собой правильные геометрические фигуры с центральными точками.
- Федеральное агентство по образованию
- Оглавление
- Глава 5. Моделирование вычислительных и операционных систем 289
- Глава 6. Основы моделирования процессов 305
- Глава 7. Задания для самостоятельной работы 311
- Глава 8. Проектирование имитационных моделей 335
- Глава 9. Технология имитационного моделирования 361
- Глава 10. Примеры принятия решений с помощью имитационного моделирования 433
- Глава 11. Задания для имитационных проектов 451
- Предисловие
- Введение
- Глава 1. Модели массового обслуживания
- 1.1. Системы массового обслуживания и их характеристики
- 1.2. Системы с одним устройством обслуживания
- 1.3. Основы дискретно-событийного моделирования смо
- 1.4. Многоканальные системы массового обслуживания
- Глава 2. Вероятностные сети систем массового обслуживания
- 2.1. Общие сведения о сетях
- 2.2. Операционный анализ вероятностных сетей
- 2.3. Операционные зависимости
- 2.4. Анализ узких мест в сети
- Глава 3. Вероятностное моделирование
- 3.1. Метод статистических испытаний
- 3.2. Моделирование дискретных случайных величин
- 3.3. Моделирование непрерывных случайных величин
- 3.4. Сбор статистических данных для получения оценок характеристик случайных величин
- Для оценки дисперсии случайной величины ξ используют формулу
- 3.5. Определение количества реализаций при моделировании случайных величин
- По формулам (3.18-3.20) находим
- Задачи для самостоятельной работы
- Задача 6
- Глава 4. Система моделированияgpss
- 4.1. Объекты
- 4.2. Часы модельного времени
- 4.3. Типы операторов
- 4.4. Внесение транзактов в модель. БлокGenerate
- Задание для самостоятельной работы:
- 4.5. Удаление транзактов из модели. БлокTerminate
- 4.6. Элементы, отображающие одноканальные обслуживающие устройства
- 4.7. Реализация задержки во времени. БлокAdvance
- Задания для самостоятельной работы:
- 4.8. Сбор статистики об ожидании. Блоки queue, depart
- 4.9. Переход транзакта в блок, отличный от последующего. БлокTransfer
- Задания для самостоятельной работы:
- 4.10. Моделирование многоканальных устройств
- 4.11. Примеры построенияGpss-моделей
- Построение модели
- 4.12. Переменные
- 4.13. Определение функции вGpss
- Пример 4.23
- 4.14. Стандартные числовые атрибуты, параметры транзактов. Блоки assign, mark, loop
- 4.15. Изменение приоритета транзактов. БлокPriority
- 4.16. Организация обслуживания с прерыванием. Блоки preempt и return
- Задание для самостоятельной работы:
- 4.17. Сохраняемые величины
- 4.18. Проверка числовых выражений. Блок test
- Пример 4.40
- Задание для самостоятельной работы:
- 4.19. Определение и использование таблиц
- Задания для самостоятельной работы:
- 4.20. Косвенная адресация
- 4.21. Обработка транзактов, принадлежащих одному семейству
- 4.22. Управление процессом моделирования в системеGpss
- 4.23. Списки пользователей
- 4.24. Блоки управления потоками транзактовLogic,gatelr,gatelSиGate
- 7 Testne p1,p2,asn2 ; Повторить, если адресат
- 4.25. Организация вывода временных рядов изGpss-модели
- 4.26. Краткая характеристика языкаPlus
- 4.27. Команды gpss World
- 4.28. Диалоговые возможностиGpssWorld
- 4.29. Отличия между gpss World и gpss/pc
- Глава 5. Моделирование вычислительных и операционных систем
- 5.1. Операционные системы компьютеров
- 5.2. Сети и системы передачи данных
- 5.3. Проблемы моделирования компьютеров и сетей
- Глава 6. Основы моделирования процессов
- 6.1. Производственные процессы
- 6.2. Распределительные процессы
- 6.3. Процессы обслуживания клиентов
- 6.4. Процессы управления разработками проектов
- Глава 7. Задания для самостоятельной работы Задание 1. Моделирование разливной линии
- Глава 8. Проектирование имитационных моделей с помощью интерактивной системы имитационного моделирования
- 8.1. Структура интерактивной системы имитационного моделирования
- 8.2. Построение концептуальной схемы модели
- 8.3. Параметрическая настройка модели
- 8.4. Генератор формул
- 8.5. Управление экспериментом
- 8.6. Запуск эксперимента и обработка результатов моделирования
- 8.7. Управление проектами и общей настройкой системы
- 8.8. Пример построения модели средствамиIss2000
- Глава 9. Технология имитационногомоделирования
- 9.1. Имитационные проекты
- 9.2. Организация экспериментов
- 9.3. Проблемы организации имитационных экспериментов
- 9.4. Оценка точности результатов моделирования
- 9.5. Факторный план
- 9.6. Дисперсионный анализAnovAв планированииэкспериментов
- 9.7. Библиотечная процедураAnova
- 9.8. Технология проведение дисперсионного анализа в системеGpss World
- 9.9. Особенности планирования экспериментов
- 9.10. Нахождение экстремальных значений на поверхности отклика
- 9.11. Организация экспериментов вGpssWorld
- 9.12. Выбор наилучшего варианта структуры системы
- Глава 10. Примеры принятия решений с помощью имитационного моделирования
- 10.1. Моделирование производственного участка
- 10.2. Моделирование технологического процесса ремонта и замены оборудования
- Глава 11. Задания для имитационных проектов
- Приложение Системные сча
- Сча транзактов
- Сча блоков:
- Сча одноканальных устройств:
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин:
- Сча вычислительных объектов
- Сча списков и групп
- Список литературы