9.5. Факторный план
При экспериментировании с моделью различают входные и выходные переменные. Входные переменные называются факторами. Выходные переменные называются откликами. Каждый фактор в эксперименте может принимать одно или несколько значений, называемыми уровнями фактора. Множество уровней факторов определяет одно из возможных состояний моделируемой системы и представляет условия проведения одного из возможных экспериментов. Существует определенная связь между уровнями факторов и откликами системы, которая обычно заранее неизвестны. Эту связь можно определить следующим образом:
где уl, - l-й отклик, п - число анализируемых откликов, xi - i-й фактор, т - число факторов.
Функция ψ в правой части называется функцией отклика или реакции. Ее геометрический образ - поверхность отклика. Так как функция ψ заранее не известна, то используют другую приближенную функцию:
Эти функции φl находят по данным эксперимента и представляют в виде степенного полинома первого, второго и, реже, третьего порядка. После проведения экспериментов аппроксимирующие полиномы заменяют уравнениями регрессии и методом наименьших квадратов находят статистические оценки их неизвестных коэффициентов.
Факторный эксперимент может быть отсеивающий, когда из всего множества факторов определяются те факторы, которые существенно влияют на отклики модели. Второй вид факторного эксперимента используется для определения экстремальных значений на поверхности отклика. В этом случае серия факторных экспериментов планируется так, чтобы достичь экстремума на поверхности отклика.
Факторный эксперимент представляет собой план, в котором все уровни каждого фактора встречаются в сочетании со всеми уровнями всех других факторов. Различные уровни некоторого фактора могут соответствовать качественным значениям (например, разные дисциплины обслуживания в устройстве) или количественным значениям (например, число устройств обслуживания). Если фактор f (f= 1,...,k) имеет Lf уровней, то общее число комбинаций уровней определяется произведением:
Если число уровней для каждого из факторов одинаково, то общее число комбинаций будет Lk .
Левая часть выражения (9.1) используется для обозначения факторного плана.
Применение факторного плана вместо классической схемы, согласно которой каждый раз изменяется только один фактор, имеет ряд преимуществ.
Становится более полной картина влияния каждого фактора, поскольку они изучаются в самых различных условиях (вследствие, одновременного изменения других факторов).
Большое число комбинаций факторов, используемых в эксперименте, облегчает предсказание результатов, которые могут быть достигнуты при определенной комбинации условий.
Если эффекты, вызываемые каждым фактором, статистически независимы, то о каждом факторе можно получить не меньше, информации, чем при изменении в экспериментах только одного фактора при фиксации остальных.
Если (как это часто бывает) различные факторы не являются независимыми, а вызывают эффекты, которые в большей или меньшей степени коррелированны, то в этом случае только факторный эксперимент может дать информацию о характере этих взаимодействий. При наличии нескольких взаимосвязанных существенных факторов обойтись без постановки факторного эксперимента невозможно. Для ряда часто встречающихся специальных задач разработано большое число стандартных факторных планов.
Рассмотрим пример 2-х факторного эксперимента, с двумя факторами на 2-х уровнях и с двумя наблюдениями в каждом опыте, т.е. план 22. Факторы принято обозначать буквами латинского алфавита А, В, С и т.д.
Результаты экспериментов сведем в таблицу 9.1.
В этой таблице yijg обозначает g-e наблюдение (g = 1,2) в ячейке i, j. Количество наблюдений (прогонов модели) g определяется желаемой точностью получения оценок откликов.
В общем случае в 2-х факторном эксперименте число уровней факторов А и В равно соответственно I и J. Обозначим математическое ожидание Е(yijg)=ηij, тогда в планировании эксперимента предполагается верной следующая модель:
где eijg - ошибка опыта. Предполагается, что все эти ошибки являются независимыми нормально распределенными случайными величинами с математическим ожиданием 0 и дисперсией σ2. При имитации ошибки опытов можно сделать независимыми, применяя различные последовательности случайных чисел при прогонах модели.
- Федеральное агентство по образованию
- Оглавление
- Глава 5. Моделирование вычислительных и операционных систем 289
- Глава 6. Основы моделирования процессов 305
- Глава 7. Задания для самостоятельной работы 311
- Глава 8. Проектирование имитационных моделей 335
- Глава 9. Технология имитационного моделирования 361
- Глава 10. Примеры принятия решений с помощью имитационного моделирования 433
- Глава 11. Задания для имитационных проектов 451
- Предисловие
- Введение
- Глава 1. Модели массового обслуживания
- 1.1. Системы массового обслуживания и их характеристики
- 1.2. Системы с одним устройством обслуживания
- 1.3. Основы дискретно-событийного моделирования смо
- 1.4. Многоканальные системы массового обслуживания
- Глава 2. Вероятностные сети систем массового обслуживания
- 2.1. Общие сведения о сетях
- 2.2. Операционный анализ вероятностных сетей
- 2.3. Операционные зависимости
- 2.4. Анализ узких мест в сети
- Глава 3. Вероятностное моделирование
- 3.1. Метод статистических испытаний
- 3.2. Моделирование дискретных случайных величин
- 3.3. Моделирование непрерывных случайных величин
- 3.4. Сбор статистических данных для получения оценок характеристик случайных величин
- Для оценки дисперсии случайной величины ξ используют формулу
- 3.5. Определение количества реализаций при моделировании случайных величин
- По формулам (3.18-3.20) находим
- Задачи для самостоятельной работы
- Задача 6
- Глава 4. Система моделированияgpss
- 4.1. Объекты
- 4.2. Часы модельного времени
- 4.3. Типы операторов
- 4.4. Внесение транзактов в модель. БлокGenerate
- Задание для самостоятельной работы:
- 4.5. Удаление транзактов из модели. БлокTerminate
- 4.6. Элементы, отображающие одноканальные обслуживающие устройства
- 4.7. Реализация задержки во времени. БлокAdvance
- Задания для самостоятельной работы:
- 4.8. Сбор статистики об ожидании. Блоки queue, depart
- 4.9. Переход транзакта в блок, отличный от последующего. БлокTransfer
- Задания для самостоятельной работы:
- 4.10. Моделирование многоканальных устройств
- 4.11. Примеры построенияGpss-моделей
- Построение модели
- 4.12. Переменные
- 4.13. Определение функции вGpss
- Пример 4.23
- 4.14. Стандартные числовые атрибуты, параметры транзактов. Блоки assign, mark, loop
- 4.15. Изменение приоритета транзактов. БлокPriority
- 4.16. Организация обслуживания с прерыванием. Блоки preempt и return
- Задание для самостоятельной работы:
- 4.17. Сохраняемые величины
- 4.18. Проверка числовых выражений. Блок test
- Пример 4.40
- Задание для самостоятельной работы:
- 4.19. Определение и использование таблиц
- Задания для самостоятельной работы:
- 4.20. Косвенная адресация
- 4.21. Обработка транзактов, принадлежащих одному семейству
- 4.22. Управление процессом моделирования в системеGpss
- 4.23. Списки пользователей
- 4.24. Блоки управления потоками транзактовLogic,gatelr,gatelSиGate
- 7 Testne p1,p2,asn2 ; Повторить, если адресат
- 4.25. Организация вывода временных рядов изGpss-модели
- 4.26. Краткая характеристика языкаPlus
- 4.27. Команды gpss World
- 4.28. Диалоговые возможностиGpssWorld
- 4.29. Отличия между gpss World и gpss/pc
- Глава 5. Моделирование вычислительных и операционных систем
- 5.1. Операционные системы компьютеров
- 5.2. Сети и системы передачи данных
- 5.3. Проблемы моделирования компьютеров и сетей
- Глава 6. Основы моделирования процессов
- 6.1. Производственные процессы
- 6.2. Распределительные процессы
- 6.3. Процессы обслуживания клиентов
- 6.4. Процессы управления разработками проектов
- Глава 7. Задания для самостоятельной работы Задание 1. Моделирование разливной линии
- Глава 8. Проектирование имитационных моделей с помощью интерактивной системы имитационного моделирования
- 8.1. Структура интерактивной системы имитационного моделирования
- 8.2. Построение концептуальной схемы модели
- 8.3. Параметрическая настройка модели
- 8.4. Генератор формул
- 8.5. Управление экспериментом
- 8.6. Запуск эксперимента и обработка результатов моделирования
- 8.7. Управление проектами и общей настройкой системы
- 8.8. Пример построения модели средствамиIss2000
- Глава 9. Технология имитационногомоделирования
- 9.1. Имитационные проекты
- 9.2. Организация экспериментов
- 9.3. Проблемы организации имитационных экспериментов
- 9.4. Оценка точности результатов моделирования
- 9.5. Факторный план
- 9.6. Дисперсионный анализAnovAв планированииэкспериментов
- 9.7. Библиотечная процедураAnova
- 9.8. Технология проведение дисперсионного анализа в системеGpss World
- 9.9. Особенности планирования экспериментов
- 9.10. Нахождение экстремальных значений на поверхности отклика
- 9.11. Организация экспериментов вGpssWorld
- 9.12. Выбор наилучшего варианта структуры системы
- Глава 10. Примеры принятия решений с помощью имитационного моделирования
- 10.1. Моделирование производственного участка
- 10.2. Моделирование технологического процесса ремонта и замены оборудования
- Глава 11. Задания для имитационных проектов
- Приложение Системные сча
- Сча транзактов
- Сча блоков:
- Сча одноканальных устройств:
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин:
- Сча вычислительных объектов
- Сча списков и групп
- Список литературы