2.1.2. Действия над матрицами
Суммой двух матриц А=(аij)m,n и В=(bij)m,n называется матрица С=А+В, элементы которой сij равны сумме соответствующих элементов аij и bij матриц А и В.
Например:
Для суммы матриц справедливы следующие свойства:
1. А+В=В+А — коммутативность;
2. А+(В+С)=(А+В)+С — ассоциативность;
3. А+0=А, 0 — нулевая матрица.
Произведением матрицы А=(аij)m,n на число называется матрица В = А, элементы которой bij вычисляются следующим образом: bij = aij, i=1..m; j=1..n. Например, если то
Из определения произведения матрицы на число вытекают следующие свойства:
1. А=А 4.
2. 1А =А 5.
3. 0А = 0 6.
Определение: Матрица (-А) = (-1)А называется противоположной матрице А.
Разность двух матриц одинакового размера определяется через предыдущие операции: A-B=A+(-1)B.
Произведением матрицы А порядка m k на матрицу В порядка k n (т.е. количество столбцов первой матрицы равно числу строк второй) называется матрица С=АВ порядка m n , элементы которой сij вычисляются по формуле:
сij = ai1b1j + ai2b2j + ... + aikbki , i=1..m; j=1..n.
Из данного выражения следует правило умножения матриц: чтобы получить элемент, стоящий на пересечении i-й строки и j-го столбца матрицы С, необходимо все элементы i-й строки матрицы А умножить на соответствующие элементы j-го столбца матрицы В и полученные произведения сложить.
Для произведения матриц справедливы следующие свойства:
1. А(ВС) = (АВ)С 3. (А+В)С = АС+ВС
2. (АВ) = ( А)В 4. С (А+В) =СА+СВ
Произведение двух матриц не коммутативно, т.е. в общем случае АВ ВА. Если АВ=ВА, то матрицы А и В называются коммутативными. Так, например, единичная матрица Е коммутативна с любой квадратной матрицей того же порядка, причем АЕ = ЕА = А.
Пример 2.1. Найти произведения АВ и ВА матриц:
Решение:
Пример 2.2. Найти произведение AB двух векторов:
Решение. При умножении матрицы-строки на вектор-столбец получаем число :
Пример 2.3. Найти произведение KL следующих матриц:
Решение:
Транспонирование матрицы — это такое преобразование, при котором строки заменяются соответствующими столбцами. Обозначение транспонированной матрицы: .
Транспонированная матрица обладает следующими свойствами:
1. (А`)` = A
2. (A + B)` = A` + B`
3. (AB)` = B`A`
Матрица А=(аij)m,n называется симметрической, если она совпадает со своей транспонированной.
Квадратная матрица А-1 порядка n называется обратной к матрице А, если она удовлетворяет соотношению:
А-1А = АА-1 = Е.
Обратную матрицу можно вычислить на основании следующих элементарных преобразований (преобразований Жордана-Гаусса) над строками матрицы:
умножение строки матрицы на любое число, отличное от нуля;
прибавление к одной строке матрицы другой строки, умноженной на любое число.
Для того, чтобы вычислить обратную матрицу для матрицы А, необходимо составить матрицу , затем с помощью элементарных преобразований преобразовать матрицу А к виду единичной матрицы Е, тогда на месте единичной матрицы получим матрицу А-1.
Пример 2.5. Вычислить обратную матрицу для матрицы A:
Решение. Составим матрицу В(0) вида:
Элемент и первую строку, содержащую данный элемент, назовем направляющими. Осуществим элементарные преобразования, в результате которых первый столбец преобразуется в единичный, с единицей в первой строке. Для этого к второй и третьей строкам прибавим первую строку, соответственно умноженную на 1 и (-2). В результате данных преобразований получим матрицу:
В матрице В(1) преобразуем второй столбец в единичный. В качестве направляющего элемента выберем элемент Так как направляющий элемент , то разделим вторую (направляющую) строку на 3. Затем к первой строке прибавим вторую, умноженную на -3. Получим матрицу
Третий столбец матрицы В(2) преобразуем в единичный. В качестве направляющего элемента выбираем Делим направляющую (третью) строку на 4 и ко второй строке прибавляем третью, умноженную на (–4/3). Получим матрицу
откуда
Выполним проверку:
Аналогично A-1A=E.
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов