Переход от одной к-матрицы злп к другой к-матрице
Пусть известна К-матрица
(3.45)
Обозначим через вектор номеров базисных (единичных) столбцов матрицы , -вектор, компоненты которого есть базисные компоненты опорного плана, определяемого матрицей , и могут быть отличны от нуля. Остальные (n-m) компонент опорного плана, определяемого матрицей , равны нулю. Очевидно, что векторы и полностью задают опорный план, определяемый матрицей . Например, пусть
= ,
тогда =( 3,1,6); = =(1,2,4) и, следовательно, опорный план, определяемый , имеет вид
=(2,0,1,0,0,4).
Итак, пусть К-матрица (3.45) определяет невырожденный опорный план
(3.46)
Выберем в матрице столбец , не принадлежащий единичной подматрице, т.е. , и такой, что в этом столбце есть хотя бы один элемент больше нуля.
Пусть . Считая направляющим элементом, совершим над матрицей один шаг метода Жордана-Гаусса. В результате получим новую матрицу
, (3.47)
в которой столбец стал единичным, но которая может и не быть К-матрицей, так как среди величин могут быть отрицательные. Условия выбора направляющего элемента , позволяющие получить новую К-матрицу - , т.е. обосновывающие способ перехода от опорного плана к опорному плану , составляет содержание следующей теоремы, которая была доказана выше:
Теорема 1.8 Пусть в к-м столбце К-матрицы - есть хотя бы один строго положительный элемент ( , ). Тогда с помощью одного шага метода Жордана-Гаусса можно построить новую К-матрицу - , выбрав направляющий элемент из условия:
(3.48)
Определение. Величину
, (3.49)
где - вектор, компонентами которого являются коэффициенты линейной функции при базисных ( ) переменных опорного плана, определяемого матрицей , назовем j-й симплекс-разностью матрицы .
Если столбец является единичным в матрице , то =0.
Пусть и - опорные планы, определяемые матрицами и соответственно. Тогда очевидно, что
(3.50)
, (3.51)
где К - номер столбца , вводимого в базис при получении матрицы из . определяется по формуле (3.48).
Теорема 1.9. Пусть в матрице есть и в столбце ( , ) есть хотя бы один строго положительный элемент. Тогда от матрицы можно перейти к матрице , причем
f ( ) f( ). (3.52)
Доказательство.
Так как в столбце матрицы есть строго положительный элемент, то согласно теореме 1.1 от матрицы можно перейти к новой матрице ЗЛП, выбрав направляющий элемент из условия (3,48).
Неравенство (3.52) вытекает из выражения (3.51), так как , а 0.
Теорема доказана.
Теорема 1.10. (критерий оптимальности опорного плана) Пусть все симплекс-разности матрицы неотрицательные. Тогда опорный план , определяемый матрицей , является оптимальным.
Доказательство.
По условию теоремы
или
(3.52)
Пусть - произвольный план задачи линейного программирования. Умножим левую и правую части (3.52) на , тогда в силу неотрицательности получим
(3.53)
Согласно (3.53) имеем
или
,
что и доказывает теорему.
Теорема 1.11. Пусть в матрице есть , и в столбце ( , ) нет ни одного строго положительного элемента. Тогда ЗЛП (3.18) не имеет конечного решения.
Доказательство.
Пусть К-я симплекс-разность матрицы
, (3.54)
и все
(3.55)
Матрица определяет опорный план
Рассмотрим вектор
,
у которого
где - любое положительное число.
Остальные компонент вектора положим равными нулю.
В силу условия (3.55) компонент вектора неотрицательные. Легко убедиться в том, что компоненты вектора удовлетворяют и функциональным ограничениям задачи линейного программирования, т.е. вектор - план задачи линейного программирования при любом положительном .
Имеем:
или окончательно
(3.56)
Так как , то из (3.56) следует, что для любого числа всегда можно найти план ЗЛП, для которого
т.е. линейная форма не ограничена сверху на множестве планов.
Теорема доказана.
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов