6.3.Задача о назначениях
Рассмотрим ситуацию, когда требуется распределить m работ (или исполнителей) по n станкам. Работа i (i = 1, ..., m), выполняемая на станке j (j = 1, ..., n), связана с затратами cij. Задача состоит в таком распределении работ по станкам (одна работа выполняется на одном станке), которое соответствует минимизации суммарных затрат.
Эту задачу можно рассматривать как частный случай транспортной задачи. Здесь работы представляют «исходные пункты», а станки – «пункты назначения». Предложение в каждом исходном пункте равно 1, т.е. ai = 1 для всех i. Аналогично спрос в каждом пункте назначения равен 1, т.е. bj = 1 для всех j. Стоимость «перевозки» (прикрепления) работы i к станку j равна cij. Если какую-либо работу нельзя выполнять на некотором станке, то соответствующая стоимость cij берется равной очень большому числу. Матрица стоимостей C определяется следующим образом:
станки
виды работ
Прежде чем решать такую задачу, необходимо ликвидировать дисбаланс, добавив фиктивные работы или станки в зависимости от начальных условий. Поэтому без потери общности можно положить m = n.
Пусть xij = 0, если j-я работа не выполняется на i-м станке,
xij = 1, если j-я работа выполняется на i-м станке.
Таким образом, решение задачи может быть записано в виде двумерного массива X = (xij). Допустимое решение называется назначением. Допустимое решение строится путем выбора одного элемента в каждой строке матрицы X = (xij) и одного элемента в каждом столбце этой матрицы. Для заданного значения n существует n! допустимых решений.
Теперь задача будет формулироваться следующим образом:
;
;
;
Ограничения первой группы необходимы для того, чтобы каждая работа выполнялась один раз. Ограничения второй группы гарантируют, что каждому станку будет приписана одна работа.
Для иллюстрации задачи о назначениях рассмотрим таблицу с тремя работами и тремя станками.
|
| Станки | ||
|
| 1 | 2 | 3 |
Виды работ | 1 | 5 | 7 | 9 |
2 | 14 | 10 | 12 | |
3 | 15 | 13 | 16 |
Специфическая структура задачи о назначениях позволяет использовать эффективный метод для ее решения.
Примечание. Оптимальное решение задачи не изменится, если из любой строки или столбца матрицы стоимостей вычесть произвольную постоянную величину.
Приведенное замечание показывает, что если можно построить новую матрицу с нулевыми элементами и эти нулевые элементы или их подмножество соответствуют допустимому решению, то такое решение будет оптимальным:
С Þ Þ = .
0 0 2
Оптимальное назначение:
остальные ,
5 + 12 + 13 = 30.
К сожалению, не всегда удается определить решение так просто.
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов