3.2. Графический метод решения злп
Графическим методом целесообразно решать ЗЛП, содержащие не более двух переменных.
Алгоритм графического метода рассмотрим применительно к задаче:
3Х1 + 2Х2 (3.16)
при
Х1 + 2Х2 6 (а)
2Х1 + Х2 8 (б)
Р = Х1+0,8Х2 5 (в) (3.17)
-Х1 + Х2 1 (г)
Х2 2 (д)
Х1 0, Х2 0 (е)
Шаг 1. Строим область допустимых решений (3.17) - область Р, т.е. геометрическое место точек, в котором одновременно удовлетворяются все ограничения ЗЛП. Каждое из неравенств (а)-(д) системы ограничений (3.17) задачи геометрически определяет полуплоскость соответственно с граничными прямыми:
Х1 + 2Х2 = 6 (а)
2Х1 + Х2= 8 (б)
Х1+0,8Х2= 5 (в)
-Х1 + Х2= 1 (г)
Х2= 2 (д)
Условия неотрицательности переменных (е) ограничивают область допустимых решений первым квадратом. Области, в которых выполняются соответствующие ограничения (3.17) в виде неравенств, указываются стрелками, направленными в сторону допустимых значений переменных (рис. 3.1).
Рис. 3.1
Если система неравенств (3.17) совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям.
Полученная таким образом область допустимых решений Р - планов ЗЛП (рис. 3.1) есть многоугольник ABCDEF - замкнутое, ограниченное, выпуклое множество с шестью крайними или угловыми точками: A, B, C, D, E, F.
Шаг 2. Строим вектор-градиент линейной формы , указывающий направления возрастания функции .
Шаг 3. Строим прямую С1Х1 +С2Х2 = const - линию уровня функции , перпендикулярную вектору-градиенту :
3Х1 + 2Х2 = const (рис.3.2)
Рис. 3.2
Шаг 4. В случае максимизации передвигают прямую 3Х1 + 2Х2 = const в направлении вектора до тех пор, пока она не покинет область Р. Крайняя точка (или точки) области, в которой линия уровня покидает допустимую область, и является решением задачи (рис. 3.3).
Рис. 3.3
Крайняя точка С - точка максимума , С = лежит на пересечении прямых (а) и (б). Для определения ее координат решим систему уравнений:
Х1 + 2Х2 = 6
2Х1 + Х2 = 8.
Откуда Х*1 = 10/3; X*2 = 4/3 или = (10/3 ; 4/3).
Подставляя значения Х*1 и X*2 в функцию , найдем
max = = 3 . 10/3 + 2 . 4/3 = 38/3.
Замечания.
1. В случае минимизации прямую С1Х1 +С2Х2 = const надо перемещать в направлении (- ), противоположном .
2. Если допустимая область решений Р представляет собой неограниченную область и прямая при движении в направлении вектора (или противоположном ему) не покидает Р, то в этом случае не ограничена сверху (или снизу), те
(или ).
Пример 3.1. Графическим способом решить ЗЛП
max (2Х1 + Х2)
при
Х1 - Х2 2 (1)
Х1 + 3Х2 3 (2)
7Х1 - Х2 2 (3)
Х1,2 0.
Шаг 1. Строим область Р (Рис. 3.4). Она является неограниченной.
Шаг 2. Строим вектор .
Шаг 3. Строим линию уровня функции = 2Х1 + Х2 = const.
Шаг 4. Передвигая линию уровня в направлении вектора , убеждаемся в неограниченном возрастании функции , то есть
Рис. 3.4
Пример 3.2. Решить графическим методом ЗЛП. Найти
Х1 + 3Х2
при ограничениях
2Х1 + 3Х2 6 (1)
Х1 + 2Х2 5 (2)
Х1 4 (3)
0 Х2 3 (4)
Из рис. 3.5 видно, что область допустимых решений пуста (Р= ).
Задача не имеет решения.
Рис. 3.5
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов