Алгоритм поиска кратчайших путей на неориентированном графе.
(2 задачи, время выполнения - почти пара) Решить задачу поиска кратчайших путей. (Презентация ИССЛЕДОВАНЕ ОПЕРАЦИЙ)
Алгоритм.
Начало.
1) В стартовой вершине Sставим (0,-) –ВЕЧНАЯ МЕТКА (Она читается 0 «из ниоткуда»).
2)Из стартовой вершины мы рассылаем ВО все соседние ВЕРШИНЫ ВРЕМЕННЫЕ МЕТКИ «метастазы» - в них ставится сумма 0 (из позиции (0,-)) и расстояния до стартовой вершины S.
Все временные метки, чтобы их отличать от вечных пишутся в круглых скобках.
Повторяем до исчерпания вершин – пока все вершины не заимеют вечные метки
а)На каждом этапе из всех имеющихся в графе к настоящему моменту временных меток выбирается лучшая – меньшая. Она объявляется вечной. (При оформлении такую метку надо зачеркнуть и написать над ней точно такую же, но уже в круглых скобках).
б)Только новорождённая временная метка
Образец оформления
Образец ответа
- Базовые задачи прикладной математики
- Инструкция по подстановке индивидуальных abcd-номеров.
- Ссылки.
- Ответы на стандартные вопросы. Преподавателям.
- Указания студентам.
- 1Й раздел: Списки литературы. (Всё искать на специализированном книжно- поисковом сайте www.Ebdb.Ru).
- Задачи принятия решений в условиях конфликта интересов (теории игр)
- Антагонистическая игра
- Стохастическая игра. Сжимающее отображение.
- Олигополия. Дуополия Курно и Штакельберга.
- Вектор Шепли.
- Последовательное равновесие для многопериодной дилеммы заключённого.
- Игры в позиционной форме (дерево игры).
- Смешанные равновесия. Игра2xn.
- Популяционные игры. Игра ястреб-голубь.
- Игра перекрёсток.
- Равновесия в угрозах.
- Теория и методы принятия многокритериальных решений. Метод Ларичева запрос
- Анализ иерархий. Классический случай.
- 10 Составных критериев: Вальда, Сэвиджа, Байеса, Лапласа, справедливого компромисса, оптимизма и др.
- Исследование Операций Управление запасами.
- Задачи финансовой математики. РасчётIrr-рентабельности
- Классические задачи на графах Алгоритм (Крускалла) построения минимального остовного дерева.
- Задача коммивояжёра. Метод ветвей и границ.
- Алгоритм Форда-Фалкерсона поиска максимального потока в сети.
- Динамическое программирование. Динамическое программирование. Кратчайшие пути на ориентированном графе.
- Алгоритм поиска кратчайших путей на неориентированном графе.
- Сетевое планирование. Ребро-работа.
- Сетевое планирование. Представление узел-работа.
- Графический метод линейного планирования (программирования)
- Транспортная задача.
- Система массового обслуживания.
- Вычислительная математика и теория алгоритмов Преобразование фурье.
- Быстрое пф.
- Имитация алгоритма Шеханге-Штрассена
- Простейшее битовое преобразование Фурье.
- Сортировка.
- Алгоритм Карацубы.
- Алгоритм Штрассена быстрого перемножения матриц.
- Криптография
- Алгоритм Евклида.
- Алгоритм Масси-Омуры
- Алгоритм Диффи-Хелмана.
- АлгоритмRsa
- Лабораторная в Экселе: ВзломRsa: алгоритм квадратичного решета для факторизации составного модуляRsa.
- Дискретная математика. Расчёт функции Эйлера для составных чисел.
- Логика. Нормальные формы. Теорема Поста.
- Кванторы.
- Релейно-контактныесхемы.
- Алгоритм поиска кратчайших расстояний на графе (Уоршалла).
- Моделирование Часть1. Задача об оптимальном применении вмещающего ландшафта.
- Качественное исследование равновесий нелинейных обыкновенных дифференциальных уравнений
- Алгоритмы. Часть 2.
- Машина Тьюринга. Теорема Кука.
- Теория информации
- Вопросык экзаменам. Вопросы по теории алгоритмов.
- Математическое и имитационное моделирование.