Динамическое программирование. Динамическое программирование. Кратчайшие пути на ориентированном графе.
(1 условная задача) Рассчитать методом динамического программирования (решения полученные другими способами не принимаются) кратчайший путь по системе дорог.
Найти кратчайший путь из SдоT.
На каждом шаге в очередном слое расставляются наименьшие возможные расстояния до Т на основе длин путей до предыдущего слоя (указаны возле стрелок) и ранее вычисленных расстояний предыдущего слоя. Результаты вычислений должны быть записаны рядом с вершинами, в противном случае в процессе проверки не возможно установить факт использования алгоритма. Кроме того, напротив каждой вершины одна из исходящих стрелок должна быть помечена как решение оптимизационной задачи поиска кратчайшего пути в этой вершине. Это даст возможность восстановить оптимальный путь.
Алгоритм решения:
В концевой вершине (в нашем случае это Т) ставится метка Z=0/галочка не ставится (в общем случае терминальные вершины образуют - некое множество, в непрерывном случае говорят о границе, которую требуется достичь).
В вершинах опирающихся на концевую (на терминальную поверхность), т.е. в вершинах первого слоя можно рассчитать целевые функции.
Общее правило целевые функции рассчитывать в тех вершинах, которые опираются только на уже рассчитанные вершины (и не опираются ни на одну нерассчитанную).
Расчет в каждом случае происходит как прибавление к большой накопленной сумме записанной в вершине, на которую опирается данная и расстояния до неё. Среди всех таких сумм берётся минимум, на соответствующем направлении ставится галочка. Против рассчитываемой вершины ставится оптимальное значение Z=…
Расчёт длится до тех пор, пока не достигнем стартовую вершину S. Перед этим обязаны рассчитать все остальные вершины, т.к. стартовая вершинаSпрямо или опосредованно опирается на все следующие за ней вершины.
- Базовые задачи прикладной математики
- Инструкция по подстановке индивидуальных abcd-номеров.
- Ссылки.
- Ответы на стандартные вопросы. Преподавателям.
- Указания студентам.
- 1Й раздел: Списки литературы. (Всё искать на специализированном книжно- поисковом сайте www.Ebdb.Ru).
- Задачи принятия решений в условиях конфликта интересов (теории игр)
- Антагонистическая игра
- Стохастическая игра. Сжимающее отображение.
- Олигополия. Дуополия Курно и Штакельберга.
- Вектор Шепли.
- Последовательное равновесие для многопериодной дилеммы заключённого.
- Игры в позиционной форме (дерево игры).
- Смешанные равновесия. Игра2xn.
- Популяционные игры. Игра ястреб-голубь.
- Игра перекрёсток.
- Равновесия в угрозах.
- Теория и методы принятия многокритериальных решений. Метод Ларичева запрос
- Анализ иерархий. Классический случай.
- 10 Составных критериев: Вальда, Сэвиджа, Байеса, Лапласа, справедливого компромисса, оптимизма и др.
- Исследование Операций Управление запасами.
- Задачи финансовой математики. РасчётIrr-рентабельности
- Классические задачи на графах Алгоритм (Крускалла) построения минимального остовного дерева.
- Задача коммивояжёра. Метод ветвей и границ.
- Алгоритм Форда-Фалкерсона поиска максимального потока в сети.
- Динамическое программирование. Динамическое программирование. Кратчайшие пути на ориентированном графе.
- Алгоритм поиска кратчайших путей на неориентированном графе.
- Сетевое планирование. Ребро-работа.
- Сетевое планирование. Представление узел-работа.
- Графический метод линейного планирования (программирования)
- Транспортная задача.
- Система массового обслуживания.
- Вычислительная математика и теория алгоритмов Преобразование фурье.
- Быстрое пф.
- Имитация алгоритма Шеханге-Штрассена
- Простейшее битовое преобразование Фурье.
- Сортировка.
- Алгоритм Карацубы.
- Алгоритм Штрассена быстрого перемножения матриц.
- Криптография
- Алгоритм Евклида.
- Алгоритм Масси-Омуры
- Алгоритм Диффи-Хелмана.
- АлгоритмRsa
- Лабораторная в Экселе: ВзломRsa: алгоритм квадратичного решета для факторизации составного модуляRsa.
- Дискретная математика. Расчёт функции Эйлера для составных чисел.
- Логика. Нормальные формы. Теорема Поста.
- Кванторы.
- Релейно-контактныесхемы.
- Алгоритм поиска кратчайших расстояний на графе (Уоршалла).
- Моделирование Часть1. Задача об оптимальном применении вмещающего ландшафта.
- Качественное исследование равновесий нелинейных обыкновенных дифференциальных уравнений
- Алгоритмы. Часть 2.
- Машина Тьюринга. Теорема Кука.
- Теория информации
- Вопросык экзаменам. Вопросы по теории алгоритмов.
- Математическое и имитационное моделирование.