2.4.2. Размерность и базис векторного пространства
Вектор называется линейной комбинацией векторов , если существуют такие действительные числа не все одновременно равные нулю, что имеет место равенство .
Введем два эквивалентных определения линейной зависимости векторов.
Определение. Система векторов (k > 1) пространства Rn называется линейно зависимой, если хотя бы один из этих векторов является линейной комбинацией остальных векторов. В противном случае система векторов называется линейно независимой.
Определение. Система векторов (k > 1) пространства Rn называется линейно зависимой, если существуют такие числа , хотя бы одно из которых отлично от нуля, что имеет место равенство: . В противном случае система векторов называется линейно независимой.
Пример 2.13. Выяснить, является ли данная система векторов линейно зависимой.
Решение. Найдем решение эквивалентного равенства
Задача сводится к решению однородной системы линейных уравнений:
относительно неизвестных .
Система имеет бесконечное множество решений. Поэтому система векторов является линейно зависимой.
Общее решение имеет вид: .
Подставим общее решение в векторное равенство
Полагая , получим: , откуда можно любой вектор выразить как линейную комбинацию остальных векторов. Например, или .
В пространстве Rn максимальное число линейно независимых векторов равно n. Любая система из n+1 вектора является линейно зависимой.
Определение. Совокупность n линейно независимых векторов пространства Rn называется его базисом.
Например, базис пространства Rn образуют n – единичных векторов , причем i – я координата вектора ei равна единице, а остальные координаты равны нулю. Данный базис принято называть естественным.
Пример 2.14. В естественном базисе заданы векторы =(1,1,0)т, =(1,-1,1)т, =(-3,5,-6)т, =(4,-4,5)т. Показать, что векторы образуют базис. Выразить вектор в базисе и найти связь между базисом и базисом .
Решение. Векторы образуют базис, если они линейно независимы. Решим векторное уравнение относительно неизвестных :
.
Решение данного уравнения единственное, а именно нулевое: . Следовательно, векторы образуют линейно независимую систему векторов и составляют базис.
Выразим связь между базисами и определим координаты вектора в новом базисе:
Выпишем для данных систем расширенную матрицу
Коэффициенты при неизвестных хij, хj (i,j=1,3) в системах совпадают. Поэтому методом Жордана-Гаусса находим одновременно решение четырех систем. Все вычисления представим в виде следующей таблицы:
Базис |
|
|
|
|
|
|
|
| 1
0
0
| 0
1
0 | 0
0
1 | 1
1
0 | 1
-1
1 | -3
5
-6 | 4
-4
5 |
| 1
-1
0 | 0
1
0 | 0
0
1 | 1
0
0 | 1
-2
1 | -3
8
-6 | 4
-8
5 |
| 1/2
1/2
-1/2 | 1/2
-1/2
1/2 | 0
0
1 | 1
0
0 | 0
1
0 | 1
-4
-2 | 0
4
1 |
| 1/4
3/2
1/4 | 3/4
-3/2
-1/4 | 1/2
-2
-1/2 | 1
0
0 | 0
1
0 | 0
0
1 | 1/2
2
-1/2 |
Матрицу А, составленную из координат векторов преобразуем в единичную матрицу Е, тогда на месте единичной матрицы Е получим обратную матрицу А-1. Матрица В преобразуется в матрицу А-1В. Вектор в новом базисе выражается в виде следующей линейной комбинации векторов нового базиса :
Связь между старым и новым базисами выражается следующим образом:
Проверка:
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов