1.1 Основные определения
Термин исследование операций впервые появился в англоязычной литературе в 1939г. в Великобритании. Возникнув в военных целях, исследование операций получило хорошую «базу» и легко перенеслось в экономику.
Исследование операций (ИО) – это применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. (Вентцель Е.С., Введение в ИО)
Исследование операций (ИО) – это применение математических методов для моделирования систем и анализа их характеристик. (Таха Х., Введение в ИО)
Операция – всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.
Исследовать операцию – найти наилучшее решение, в условиях, когда имеют место ограничения (экономического, технического и др. характера).
Решение – определенный выбор зависящих от организатора параметров
Цель исследования операций – предварительное количественное обоснование оптимальных решений. (Вентцель Е.С., Введение в ИО)
Цель исследования операций заключается в том, чтобы выявить наилучший (оптимальный) способ действий при решении той или иной задачи организационного управления в условиях, когда имеют место ограничения технико-экономического или какого-либо другого характера. Таха Х., Введение в ИО)
Оптимальными считают те решения, которые по тем или иным соображениям предпочтительнее других. Поэтому
основной задачей исследования операций является предварительное количественное обоснование оптимальных решений.
Эффективность операции —количественно выражается в виде критерия эффективности — целевой функции.
Для применения количественных методов исследования требуется построить математическую модель операции.
Экономико-математическая модель — достаточно точное описание исследуемого экономического процесса или объекта с помощью математического аппарата (различного рода функций, уравнений, систем уравнений и неравенств и т.п.).
- Учебное пособие
- Оглавление
- 2. Элементы линейной алгебры 21
- 3. Линейное программирование 48
- 4. Теория двойственности в линейном программировании 98
- 5. Целочисленные модели исследования операций 137
- 6. Экономические задачи, сводящиеся к транспортной модели 160
- Введение в исследование операций
- 1.1 Основные определения
- Этапы исследования операций
- Домашнее задание №1
- 2. Элементы линейной алгебры
- 2.1. Алгебра матриц
- 2.1.1. Виды матриц
- 2.1.2. Действия над матрицами
- Домашнее задание №2
- 2.2. Вычисление определителей
- Домашнее задание №3
- 2.3. Решение систем алгебраических уравнений
- 2.3.1. Основные понятия и определения
- 2.3.2. Формулы крамера и метод обратной матрицы
- 2.3.3. Метод жордана-гаусса
- Домашнее задание №5
- 2.4. Векторное пространство
- 2.4.2. Размерность и базис векторного пространства
- Домашнее задание №6
- 2.5. Решение задач линейной алгебры с помощью ms excel
- 3. Линейное программирование
- 3.1. Постановки задачи линейного программирования
- 3.1.1. Общая постановка задачи линейного программирования
- 3.1.2. Основная задача линейного программирования
- 3.1.3. Каноническая задача линейного программирования
- 3.2. Графический метод решения злп
- Домашнее задание №7
- Домашнее задание №8
- 3.3. Анализ решения (модели) на чувствительность
- Домашнее задание №9
- 3.4. Решение линейных моделей симплекс-методом.
- Переход от одной к-матрицы злп к другой к-матрице
- Алгоритм симплекс-метода
- Домашнее задание №10
- 3.4. Двойственный симплекс-метод (р-метод)
- Определение р-матрицы злп
- Условия перехода от одной р-матрицы злп к другой
- Алгоритм р-метода
- Решение задач р-методом
- Домашнее задание №11
- Домашнее задание №12
- 3.5. Решение злп двухэтапным симплекс-методом
- Первый этап - решение вспомогательной задачи
- Второй этап - решение исходной задачи
- Домашнее задание №13
- 4. Теория двойственности в линейном программировании
- 4.1. Определение и экономический смысл двойственной злп
- 4.2. Основные положения теории двойственности
- Получение оптимального плана двойственной задачи на основании теоремы 4
- На первой итерации получен оптимальный план злп (4.24).
- 4.3. Решение злп с помощью Ms Excel
- 4.4. Анализ решения злп на основе отчетов ms excel
- 5. Целочисленные модели исследования операций
- 5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- X1, х2 0, целые.
- Подробное описание метода
- 5.2. Задача коммивояжера
- Применение метода ветвей и границ для решения задачи коммивояжера
- Ветвление
- Построение редуцированных матриц и и вычисление оценок снизу
- Формирование списка кандидатов на ветвление
- 6. Экономические задачи, сводящиеся к транспортной модели
- 6.1.Транспортная задача линейного программирования
- Методы составления первоначальных опорных планов
- Метод потенциалов решения транспортной задачи
- Проверка выполнения условия оптимальности для незанятых клеток
- Выбор клетки, в которую необходимо поместить перевозку
- Построение цикла и определение величины перераспределения груза
- Проверка нового плана на оптимальность
- Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- 6.2.Экономические задачи, сводящиеся к транспортной модели
- Оптимальное распределение оборудования
- Формирование оптимального штата фирмы
- Задача календарного планирования производства
- Модель без дефицита
- Модель с дефицитом
- 6.3.Задача о назначениях
- Венгерский алгоритм
- Оптимальное исследование рынка
- Оптимальное использование торговых агентов