Продуктивність
Існує кілька основних характеристик продуктивності мережі:
час реакції;
пропускна здатність;
затримка передачі та варіація затримки передачі.
Час реакції визначається як інтервал часу між виникненням запиту користувача до якої-небудь мережної служби й одержанням відповіді на цей запит.
Час реакції мережі звичайно складається з декількох складових. У загальному випадку в нього входить час підготовки запитів на клієнтському комп'ютері, час передачі запитів між клієнтом і сервером через сегменти мережі й проміжне комунікаційне встаткування, час обробки запитів на сервері, час передачі відповідей від сервера клієнтові й час обробки одержуваних від сервера відповідей на клієнтському комп'ютері.
Ясно, що користувача розкладання часу реакції на складові не цікавить — йому важливий кінцевий результат, однак для мережного фахівця це дає можливість оцінити продуктивність окремих елементів мережі, виявити вузькі місця і якщо буде потреба виконати модернізацію мережі для підвищення її загальної продуктивності.
Пропускна здатність — це обсяг даних, переданих мережею або її частиною в одиницю часу. Пропускна здатність уже не є користувальницькою характеристикою, тому що вона говорить про швидкості виконання внутрішніх операцій мережі — передачі пакетів даних між вузлами мережі через різні комунікаційні пристрої. Зате вона безпосередньо характеризує якість виконання основної функції мережі — транспортування повідомлень — і тому частіше використовується при аналізі продуктивності мережі, ніж час реакції.
Пропускна здатність виміряється або в бітах у секунду, або в пакетах у секунду. Пропускна здатність може бути миттєвою, максимальною й середньою.
Середня пропускна здатність обчислюється шляхом розподілу загального обсягу переданих даних на час їхньої передачі, причому вибирається досить тривалий проміжок часу — година, день або тиждень.
Миттєва пропускна здатність відрізняється від середньої тим, що для усереднення вибирається дуже маленький проміжок часу — наприклад, 10 мс або 1 с.
Максимальна пропускна здатність — це найбільша миттєва пропускна здатність, зафіксована протягом періоду спостереження.
Важливо відзначити, що через послідовний характер передачі пакетів різними елементами мережі загальна пропускна здатність мережі будь-якого складеного шляху в мережі дорівнюватиме мінімальній із пропускних здатностей складових елементів маршруту. Для підвищення пропускної здатності складеного шляху необхідно в першу чергу звернути увагу на самі повільні елементи — у цьому випадку таким елементом, швидше за все, буде маршрутизатор.
Затримка передачі визначається як затримка між моментом надходження пакета на вхід якого-небудь мережного пристрою або частини мережі й моментом появи його на виході цього пристрою. Цей параметр продуктивності за змістом близький до реакції мережі, але відрізняється тим, що завжди характеризує тільки мережні етапи обробки даних, без затримок обробки комп'ютерами мережі. Звичайно якість мережі характеризують величинами максимальної затримки передачі й варіацією затримки. Не всі типи трафіку чутливі до затримок передачі, у всякому разі, до тих величин затримок, які характерні для комп'ютерних мереж, — звичайно затримки не перевищують сотень мілісекунд, рідше — декількох секунд. Такого порядку затримки пакетів, породжуваних файловою службою, службою електронної пошти або службою друку, мало впливають на якість цих служб із погляду користувача мережі. З іншого боку, такі ж затримки пакетів, що переносять голосові дані або відеозображення, можуть приводити до значного зниження якості надаваної користувачеві інформації — виникненню ефекту "луни", неможливості розібрати деякі слова, тремтіння зображення й т.п.
Пропускна здатність і затримка передачі є незалежними параметрами, і мережа може мати, наприклад, високу пропускну здатність, але вносити значні затримки при передачі кожного пакета. Приклад такої ситуації дає канал зв'язку, утворений геостаціонарним супутником. Пропускна здатність цього каналу може бути досить високою, наприклад 2 Мбіт/с, у той час як затримка передачі завжди становить не менш 0,24 с, що визначається швидкістю поширення сигналу (близько 300 000 км/с) і довжиною каналу (72 000 км).
- Тема 1. Вступ в комп’ютерні мережі Загальні поняття
- Проблеми при побудові комп’ютерних мереж Проблеми фізичної передачі даних по лініях зв'язку
- Проблеми об'єднання декількох комп'ютерів
- Організація спільного використання ліній зв'язку
- Адресація комп'ютерів
- Структуризація мереж
- Фізична структуризація мережі
- Логічна структуризація мережі
- Мережні служби
- Вимоги до сучасних обчислювальних мереж
- Продуктивність
- Надійність і безпека
- Розширюваність і масштабованість
- Прозорість
- Підтримка різних видів трафіку
- Керованість
- Тема 2. Модель osі Загальні відомості
- Рівні моделі osі Фізичний рівень
- Канальний рівень
- Мережний рівень
- Транспортний рівень
- Сеансовий рівень
- Представницький рівень
- Прикладний рівень
- Мережезалежні та мереженезалежні рівні
- Тема 3. Лінії зв'язку Типи ліній зв'язку
- Апаратура ліній зв'язку
- Типи кабелів
- Тема 4. Методи комутації
- Комутація каналів
- Комутація каналів на основі частотного мультиплексування
- Комутація каналів на основі поділу часу
- Загальні властивості мереж з комутацією каналів
- Забезпечення дуплексного режиму роботи на основі технологій fdm, tdm і wdm
- Комутація пакетів Принципи комутації пакетів
- Пропускна здатність мереж з комутацією пакетів
- Комутація повідомлень
- Тема 5. Технологія Ethernet (802.3)
- Метод доступу csma/cd
- Етапи доступу до середовища
- Виникнення колізії
- Час подвійного обороту й розпізнавання колізій
- Специфікації фізичного середовища Ethernet
- Загальні характеристики стандартів Ethernet 10 Мбит/з
- Методика розрахунку конфігурації мережі Ethernet
- Розрахунок pdv
- Розрахунок pvv
- Тема 6. Інші технології локальних мереж Технологія Token Rіng (802.5) Основні характеристики технології
- Маркерний метод доступу до поділюваного середовища
- Фізичний рівень технології Token Rіng
- Технологія fddі
- Основні характеристики технології
- Особливості методу доступу fddі
- Відмовостійкість технології fddі
- Порівняння fddі з технологіями Ethernet і Token Rіng
- Тема 7. Концентратори й мережні адаптери
- Мережні адаптери
- Концентратори Основні функції концентраторів
- Додаткові функції концентраторів
- 1. Відключення портів
- 2. Підтримка резервних зв'язків
- 3. Захист від несанкціонованого доступу
- 4. Багатосегментні концентратори
- 5. Керування концентратором по протоколу snmp
- Тема 8. Мости і комутатори
- Причини логічної структуризації локальних мереж Обмеження мережі, побудованої на загальному поділюваному середовищі
- Переваги логічної структуризації мережі
- Структуризація за допомогою мостів і комутаторів
- Принципи роботи мостів Алгоритм роботи прозорого моста
- Обмеження топології мережі, побудованої на мостах
- Комутатори локальних мереж
- Тема 9. Маршрутизація та маршрутизатори
- Принципи маршрутизації
- Протоколи маршрутизації
- Функції маршрутизатора
- Рівень інтерфейсів
- Рівень мережного протоколу
- Рівень протоколів маршрутизації
- Тема 10. Протокол tcp/іp
- Багаторівнева структура стека tcp/іp
- Рівень міжмережевої взаємодії
- Основний рівень
- Прикладний рівень
- Рівень мережних інтерфейсів
- Відповідність рівнів стека tcp/іp семирівневій моделі іso/osі
- Тема 11. Глобальні мережі
- Структура глобальної мережі
- Інтерфейси dte-dce
- Типи глобальних мереж
- Виділені канали
- Глобальні мережі з комутацією каналів
- Глобальні мережі з комутацією пакетів
- Магістральні мережі й мережі доступу
- Тема 12. Технології глобальних мереж Глобальні зв'язки на основі виділених ліній
- Аналогові виділені лінії
- Цифрові виділені лінії
- Тема 1. Вступ в комп’ютерні мережі