Фізична структуризація мережі
Найпростіший з комунікаційних пристроїв — повторювач (repeater) — використовується для фізичного з'єднання різних сегментів кабелю локальної мережі з метою збільшення загальної довжини мережі. Повторювач передає сигнали, що приходять із одного сегмента мережі, в інші її сегменти (рис.1.3). Повторювач дозволяє перебороти обмеження на довжину ліній зв'язку за рахунок поліпшення якості переданого сигналу — відновлення його потужності й амплітуди, поліпшення фронтів і т.п.
Рис.1.3. Повторювач дозволяє збільшити довжину мережі Ethernet
Концентратори характерні практично для всіх базових технологій локальних мереж — Ethernet, ArcNet, Token Rіng, FDDІ, Fast Ethernet, Gіgabіt Ethernet, l00VG-AnyLAN.
Потрібно підкреслити, що в роботі концентраторів будь-яких технологій багато спільного — вони повторюють сигнали, що прийшли з одного зі своїх портів, на інших своїх портах. Різниця полягає в тому, на яких саме портах повторюються вхідні сигнали. Так, концентратор Ethernet повторює вхідні сигнали на всіх своїх портах, крім того, з якого сигнали надходять (рис.1.4, а), а концентратор Token Rіng (рис.1.4, б) повторює вхідні сигнали, що надходять із деякого порту, тільки на одному порту — на тому, до якого підключений наступний у кільці комп'ютер.
УВАГА! Концентратор завжди змінює фізичну топологію мережі, але при цьому залишає без зміни її логічну топологію.
Рис.1.4. Концентратори різних технологій
Нагадаємо, що під фізичною топологією розуміється конфігурація зв'язків, утворених окремими частинами кабелю, а під логічною — конфігурація інформаційних потоків між комп'ютерами мережі. У багатьох випадках фізична й логічна топології мережі збігаються. Наприклад, мережа, представлена на рис.1.5, а, має фізичну топологію кільце. Комп'ютери цієї мережі одержують доступ до кабелів кільця за рахунок передачі один одному спеціального кадру — маркера, причому цей маркер також передається послідовно від комп'ютера до комп'ютера в тому ж порядку, у якому комп'ютери утворюють фізичне кільце, тобто комп'ютер А передає маркер комп'ютеру В, комп'ютер В — комп'ютеру С и т.д. Мережа, показана на рис.1.5, б, демонструє приклад розбіжності фізичної та логічної топології. Фізично комп'ютери з'єднані по топології загальна шина. Доступ же до шини відбувається не по алгоритму випадкового доступу, застосовуваному в технології Ethernet, а шляхом передачі маркера в кільцевому порядку: від комп'ютера А — комп'ютеру В, від комп'ютера В — комп'ютеру С и т.д. Тут порядок передачі маркера вже не повторює фізичні зв'язки, а визначається логічним конфігуруванням драйверів мережних адаптерів. Ніщо не заважає настроїти мережні адаптери і їхні драйвери так, щоб комп'ютери утворили кільце в іншому порядку, наприклад: В, А, С... При цьому фізична структура мережі ніяк не змінеться.
Рис.1.5. Логічна й фізична топології мережі
Іншим прикладом розбіжності фізичної й логічної топологий мережі є вже розглянута мережа на рис.1.4, а. Концентратор Ethernet підтримує в мережі фізичну топологію зірка. Однак логічна топологія мережі залишилася без змін — це загальна шина. Тому що концентратор повторює дані, що прийшли з будь-якого порту, на всіх інших портах, то вони з'являються одночасно на всіх фізичних сегментах мережі, як і в мережі з фізичною загальною шиною. Логіка доступу до мережі зовсім не міняється: усі компоненти алгоритму випадкового доступу — визначення незайнятості середовища, захоплення середовища, розпізнавання й відпрацьовування колізій — залишаються в силі.
Фізична структуризація мережі за допомогою концентраторів корисна не тільки для збільшення відстані між вузлами мережі, але й для підвищення її надійності. Наприклад, якщо який-небудь комп'ютер мережі Ethernet з фізичною загальною шиною через збій починає беззупинно передавати дані по загальному кабелю, то вся мережа виходить з ладу, і для рішення цієї проблеми залишається тільки один вихід — вручну від’єднати мережний адаптер цього комп'ютера від кабелю. У мережі Ethernet, побудованої з використанням концентратора, ця проблема може бути вирішена автоматично — концентратор відключає свій порт, якщо виявляє, що приєднаний до нього вузол занадто довго монопольно займає мережу. Концентратор може блокувати некоректно працюючий вузол і в інших випадках, виконуючи роль деякого керуючого вузла.
- Тема 1. Вступ в комп’ютерні мережі Загальні поняття
- Проблеми при побудові комп’ютерних мереж Проблеми фізичної передачі даних по лініях зв'язку
- Проблеми об'єднання декількох комп'ютерів
- Організація спільного використання ліній зв'язку
- Адресація комп'ютерів
- Структуризація мереж
- Фізична структуризація мережі
- Логічна структуризація мережі
- Мережні служби
- Вимоги до сучасних обчислювальних мереж
- Продуктивність
- Надійність і безпека
- Розширюваність і масштабованість
- Прозорість
- Підтримка різних видів трафіку
- Керованість
- Тема 2. Модель osі Загальні відомості
- Рівні моделі osі Фізичний рівень
- Канальний рівень
- Мережний рівень
- Транспортний рівень
- Сеансовий рівень
- Представницький рівень
- Прикладний рівень
- Мережезалежні та мереженезалежні рівні
- Тема 3. Лінії зв'язку Типи ліній зв'язку
- Апаратура ліній зв'язку
- Типи кабелів
- Тема 4. Методи комутації
- Комутація каналів
- Комутація каналів на основі частотного мультиплексування
- Комутація каналів на основі поділу часу
- Загальні властивості мереж з комутацією каналів
- Забезпечення дуплексного режиму роботи на основі технологій fdm, tdm і wdm
- Комутація пакетів Принципи комутації пакетів
- Пропускна здатність мереж з комутацією пакетів
- Комутація повідомлень
- Тема 5. Технологія Ethernet (802.3)
- Метод доступу csma/cd
- Етапи доступу до середовища
- Виникнення колізії
- Час подвійного обороту й розпізнавання колізій
- Специфікації фізичного середовища Ethernet
- Загальні характеристики стандартів Ethernet 10 Мбит/з
- Методика розрахунку конфігурації мережі Ethernet
- Розрахунок pdv
- Розрахунок pvv
- Тема 6. Інші технології локальних мереж Технологія Token Rіng (802.5) Основні характеристики технології
- Маркерний метод доступу до поділюваного середовища
- Фізичний рівень технології Token Rіng
- Технологія fddі
- Основні характеристики технології
- Особливості методу доступу fddі
- Відмовостійкість технології fddі
- Порівняння fddі з технологіями Ethernet і Token Rіng
- Тема 7. Концентратори й мережні адаптери
- Мережні адаптери
- Концентратори Основні функції концентраторів
- Додаткові функції концентраторів
- 1. Відключення портів
- 2. Підтримка резервних зв'язків
- 3. Захист від несанкціонованого доступу
- 4. Багатосегментні концентратори
- 5. Керування концентратором по протоколу snmp
- Тема 8. Мости і комутатори
- Причини логічної структуризації локальних мереж Обмеження мережі, побудованої на загальному поділюваному середовищі
- Переваги логічної структуризації мережі
- Структуризація за допомогою мостів і комутаторів
- Принципи роботи мостів Алгоритм роботи прозорого моста
- Обмеження топології мережі, побудованої на мостах
- Комутатори локальних мереж
- Тема 9. Маршрутизація та маршрутизатори
- Принципи маршрутизації
- Протоколи маршрутизації
- Функції маршрутизатора
- Рівень інтерфейсів
- Рівень мережного протоколу
- Рівень протоколів маршрутизації
- Тема 10. Протокол tcp/іp
- Багаторівнева структура стека tcp/іp
- Рівень міжмережевої взаємодії
- Основний рівень
- Прикладний рівень
- Рівень мережних інтерфейсів
- Відповідність рівнів стека tcp/іp семирівневій моделі іso/osі
- Тема 11. Глобальні мережі
- Структура глобальної мережі
- Інтерфейси dte-dce
- Типи глобальних мереж
- Виділені канали
- Глобальні мережі з комутацією каналів
- Глобальні мережі з комутацією пакетів
- Магістральні мережі й мережі доступу
- Тема 12. Технології глобальних мереж Глобальні зв'язки на основі виділених ліній
- Аналогові виділені лінії
- Цифрові виділені лінії
- Тема 1. Вступ в комп’ютерні мережі